forked from DanielStreicker/ViralHostPredictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vectorPredict_selGen.R
217 lines (173 loc) · 7.42 KB
/
vectorPredict_selGen.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Babayan, Orton & Streicker
Predicting Reservoir Hosts and Arthropod Vectors from Evolutionary Signatures in RNA Virus Genomes
-- Vector host prediction from selected genomic features
"""
rm(list=ls())
setwd("") # Set local working directory where files are located
library(plyr)
library(h2o) # https://www.h2o.ai/products/h2o/
library(dplyr)
library(reshape2)
library(matrixStats)
`%not in%` <- function (x, table) is.na(match(x, table, nomatch=NA_integer_))
# Start h2o JVM
localh20<-h2o.init(nthreads = -1) # Start a local H2O cluster using nthreads = num available cores
# Read data from file
f1<-read.csv(file="BabayanEtAl_VirusData.csv",header=T)
fis<-read.csv(file="featureImportance_vector.csv",header=T)
# Feature definition
dinucs<-grep("[A|T|G|C|U]p[A|T|G|C|U]",names(f1),value=T)
cps<-grep(".[A|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|X|Y]..[A|T|G|C|U]",names(f1),value=T)
aa.codon.bias<-grep(".Bias",names(f1),value=T)
# Remove orphans
f2<-subset(f1,f1$Vector.borne==1)
f3<-subset(f2,f2$Vector=="mosquito"|f2$Vector=="midge"|f2$Vector=="sandfly"|f2$Vector=="tick")
f_v<-droplevels(f3)
f_v$response<-f_v$Vector
vecorphans<-subset(f1,f1$Genbank.accession=="KF186496.1"|f1$Genbank.accession=="NC_008718.1"|f1$Genbank.accession=="NC_005039.1"|f1$Genbank.accession=="NC_026624.1"|f1$Genbank.accession=="NC_022755.1"|f1$Genbank.accession=="JX297815.1"|f1$Genbank.accession=="NC_025341.1"|f1$Genbank.accession=="NC_007020.1"|f1$Genbank.accession=="NC_025391.1"|f1$Genbank.accession=="NC_026623.1"|f1$Genbank.accession=="NC_002526.1"|f1$Genbank.accession=="NC_009026.2"|f1$Genbank.accession=="NC_025396.1"|f1$Genbank.accession=="NC_025358.1"|f1$Genbank.accession=="NC_025253.1"|f1$Genbank.accession=="NC_023812.1"|f1$Genbank.accession=="NC_015375.1"|f1$Genbank.accession=="NC_007020.1"|f1$Genbank.accession=="KM408491.1")
vecorphans<-vecorphans[with(vecorphans,order(Viral.group,Genbank.accession,decreasing=T)),]
# organize vector database
mosq<-subset(f_v,f_v$Vector=="mosquito")
midg<-subset(f_v,f_v$Vector=="midge")
tick<-subset(f_v,f_v$Vector=="tick")
sand<-subset(f_v,f_v$Vector=="sandfly")
# feature selection
nfeats<-100
totalfeats<-length(fis$vimean)
f<-seq(from = totalfeats-(nfeats-1),to = totalfeats, by=1)
gen.feats<-as.character(fis[f,1])
bp<-as.character(sort(unique(f_v$Vector)))
total.feats<-length(gen.feats)
# Clean up
rm(f1,f2,f3)
# Train many models
set.seed(78910)
s<-.6 # Proportion in the training set
nloops<-250
lr<-c()
md<-c()
sr<-c()
csr<-c()
nt<-c()
mr<-c()
accuracy.v<-c()
pc.accuracy<-matrix(nrow=nloops,ncol=4)
test.record<-matrix(nrow=46,ncol=nloops)
vimps<-matrix(nrow=total.feats,ncol=nloops)
ntax=length(bp)
for (i in 1:nloops){
mosq_sel<-mosq[sample(1:nrow(mosq),20),] # downsample mosquito viruses
f_all<-rbind(mosq_sel,midg,tick,sand)
trains<-f_all %>% group_by(response) %>%
filter(Genbank.accession %in% sample(unique(Genbank.accession), floor(s*length(unique(Genbank.accession)))))
testval<-subset(f_v,!(f_v$Genbank.accession %in% trains$Genbank.accession)) # ref numbers absent from training set
vals<-testval %>% group_by(response) %>%
filter(Genbank.accession %in% sample(unique(Genbank.accession), floor(.3*length(unique(Genbank.accession)))))
tests<-subset(testval,!(testval$Genbank.accession %in% vals$Genbank.accession)) # ref numbers in testval set absent from test set
trains<-droplevels(trains)
tests<-droplevels(tests)
vals<-droplevels(vals)
ntest<-dim(tests)[1]
test.record[,i]<-as.character(tests$Genbank.accession)
# Training set
set<-c("response",gen.feats)
f1_train<-trains[,c(set)]
# Test set
testID<-tests$Virus.name
f1_test<-tests[,c(set)]
# Optimization set
valID<-vals$Virus.name
f1_val<-vals[,c(set)]
# Vector orphans
set<-c(gen.feats)
f1_orphan<-vecorphans[,c(set)]
# Convert to h2o data frames
train<-as.h2o(f1_train)
val<-as.h2o(f1_val)
test<-as.h2o(f1_test)
orpvec<-as.h2o(f1_orphan)
rm(f1_test,f1_train,f1_val,f1_orphan)
# Identify the response column
y <- "response"
# Identify the predictor columns
x <- setdiff(names(train), y)
# Convert response to factor
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
val[,y] <- as.factor(val[,y])
# Train and validate a grid of GBMs
gbm_params <- list(learn_rate = c(.001,seq(0.01, 0.2, .02)),
max_depth = seq(6, 15, 1),
sample_rate = seq(0.6, 1.0, 0.1),
col_sample_rate = seq(0.5, 1.0, 0.1),
ntrees=c(100,150,200),
min_rows=c(5,8,10))
search_criteria <- list(strategy = "RandomDiscrete",
max_models = 500)
gbm_grid4 <- h2o.grid("gbm", x = x, y = y,
grid_id = "gbm_grid4",
training_frame = train,
validation_frame = val,
seed = 1,
hyper_params = gbm_params,
search_criteria = search_criteria)
gbm_gridperf <- h2o.getGrid(grid_id = "gbm_grid4",
sort_by = "accuracy",
decreasing = TRUE)
# Grab the model_id for the top GBM model
best_gbm_model_id <- gbm_gridperf@model_ids[[1]]
best_gbm <- h2o.getModel(best_gbm_model_id)
perf <- h2o.performance(best_gbm, test)
# Record best settings
lr[i]<-as.numeric(gbm_gridperf@summary_table[1,2]) # learn_rate
sr[i]<-as.numeric(gbm_gridperf@summary_table[1,6]) # sample_rate
md[i]<-as.numeric(gbm_gridperf@summary_table[1,3]) # maxdepth
csr[i]<-as.numeric(gbm_gridperf@summary_table[1,1]) # col_sample_rate
mr[i]<-as.numeric(gbm_gridperf@summary_table[1,4]) # min rows
nt[i]<-as.numeric(gbm_gridperf@summary_table[1,5]) # n trees
# Print confusion matrix
cm1<-h2o.confusionMatrix(perf)
nclass<-length(unique(trains$response))
cm2<-cm1[1:nclass,1:nclass]
cm<-as.matrix(cm2)
norm_cm<-cm/rowSums(cm)
accuracy.v[i]=sum(diag(cm))/sum(cm)
pc.accuracy[i,]<-t(diag(cm)/rowSums(cm))
rownames(norm_cm)<-c("Midge","Mosquito","Sandfly","Tick")
colnames(norm_cm)<-c("Midge","Mosquito","Sandfly","Tick")
write.csv(norm_cm,file=paste("h2o_Vector_dinuc.blastn_CM_",i,".csv"))
# Retreive feature importance
vi <- h2o.varimp(best_gbm)
data2 <- vi[order(vi[,1],decreasing=FALSE),] # order alphabetically
vimps[,i]<-data2[,4]
# Orphan predictions
orp.pred <- h2o.predict(best_gbm, orpvec)
df<-orp.pred[,c(2:5)]
df2<-as.data.frame(df)
row.names(df2)<-vecorphans$Virus.name
colnames(df2)<-c("Midge","Mosquito","Sandfly","Tick")
write.csv(df2,file=paste("VectorOrphans",i,".csv",sep="_"))
# Test set predictions
test.pred<-h2o.predict(best_gbm,test[,2:length(names(test))]) # REMOVE host COLUMN
df2<-as.data.frame(test.pred)
row.names(df2)<-testID
write.csv(df2,file=paste("VectorTestPred",i,".csv",sep="_"))
# Clean up
h2o.rm("gbm_grid4")
rm(gbm_grid4,gbm_gridperf,best_gbm,train,val,test,orpvec,test.pred,orp.pred,vi)
}
accs<-data.frame(accuracy.v,pc.accuracy,lr,sr,md,csr,mr,nt)
colnames(accs)[2:(ntax+1)]<-row.names(cm)
row.names(vimps)<-data2$variable
# Write results summaries
write.csv(accs,file="Vector_SelGen100_out.csv",row.names = F)
write.csv(test.record,file="Vector_SelGen100_TestSets.csv",row.names = F)
write.csv(vimps,file="Vector_SelGen100_FI.csv",row.names = T)
# Null model accuracy
prob<-table(trains$response)/sum(table(trains$response))
vecs<-table(tests$response)
chanceAccurate<-round(sum(prob*vecs),digits=0)
tot<-sum(vecs)
nullAcc<-chanceAccurate/tot
print(nullAcc)