-
Notifications
You must be signed in to change notification settings - Fork 0
/
left1.java
195 lines (157 loc) · 9.31 KB
/
left1.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
package org.firstinspires.ftc.teamcode;
import com.qualcomm.robotcore.eventloop.opmode.Autonomous;
import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;
import com.qualcomm.robotcore.hardware.DcMotor;
import com.qualcomm.robotcore.util.ElapsedTime;
/*
* This OpMode illustrates the concept of driving a path based on encoder counts.
* The code is structured as a LinearOpMode
*
* The code REQUIRES that you DO have encoders on the wheels,
* otherwise you would use: RobotAutoDriveByTime;
*
* This code ALSO requires that the drive Motors have been configured such that a positive
* power command moves them forward, and causes the encoders to count UP.
*
* The desired path in this example is:
* - Drive forward for 48 inches
* - Spin right for 12 Inches
* - Drive Backward for 24 inches
* - Stop and close the claw.
*
* The code is written using a method called: encoderDrive(speed, leftInches, rightInches, timeoutS)
* that performs the actual movement.
* This method assumes that each movement is relative to the last stopping place.
* There are other ways to perform encoder based moves, but this method is probably the simplest.
* This code uses the RUN_TO_POSITION mode to enable the Motor controllers to generate the run profile
*
* Use Android Studio to Copy this Class, and Paste it into your team's code folder with a new name.
* Remove or comment out the @Disabled line to add this OpMode to the Driver Station OpMode list
*/
@Autonomous(name="Left 1", group="New")
//@Disabled
public class left1 extends LinearOpMode {
/* Declare OpMode members.*/
private DcMotor left_back_drive = null;
private DcMotor left_front_drive = null;
private DcMotor right_back_drive = null;
private DcMotor right_front_drive = null;
private ElapsedTime runtime = new ElapsedTime();
// Calculate the COUNTS_PER_INCH for your specific drive train.
// Go to your motor vendor website to determine your motor's COUNTS_PER_MOTOR_REV
// For external drive gearing, set DRIVE_GEAR_REDUCTION as needed.
// For example, use a value of 2.0 for a 12-tooth spur gear driving a 24-tooth spur gear.
// This is gearing DOWN for less speed and more torque.
// For gearing UP, use a gear ratio less than 1.0. Note this will affect the direction of wheel rotation.
static final double COUNTS_PER_MOTOR_REV = 140 ; // eg: TETRIX Motor Encoder
static final double DRIVE_GEAR_REDUCTION = 1.0 ; // No External Gearing.
static final double WHEEL_DIAMETER_INCHES = 4.0 ; // For figuring circumference
static final double COUNTS_PER_INCH = (COUNTS_PER_MOTOR_REV * DRIVE_GEAR_REDUCTION) /
(WHEEL_DIAMETER_INCHES * 3.1415);
static final double DRIVE_SPEED = 0.6;
static final double TURN_SPEED = 0.5;
@Override
public void runOpMode() {
// Initialize the drive system variables.
left_back_drive = hardwareMap.get(DcMotor.class, "left_back_drive");
left_front_drive = hardwareMap.get(DcMotor.class, "left_front_drive");
right_front_drive = hardwareMap.get(DcMotor.class, "right_front_drive");
right_back_drive = hardwareMap.get(DcMotor.class, "right_back_drive");
// To drive forward, most robots need the motor on one side to be reversed, because the axles point in opposite directions.
// When run, this OpMode should start both motors driving forward. So adjust these two lines based on your first test drive.
// Note: The settings here assume direct drive on left and right wheels. Gear Reduction or 90 Deg drives may require direction flips
left_back_drive.setDirection(DcMotor.Direction.REVERSE);
right_back_drive.setDirection(DcMotor.Direction.FORWARD);
left_front_drive.setDirection(DcMotor.Direction.REVERSE);
right_front_drive.setDirection(DcMotor.Direction.FORWARD);
left_front_drive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
right_front_drive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
left_back_drive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
right_back_drive.setMode(DcMotor.RunMode.STOP_AND_RESET_ENCODER);
left_front_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
right_front_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
left_back_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
right_back_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
// Send telemetry message to indicate successful Encoder reset
telemetry.addData("Starting at", "%7d :%7d",
left_front_drive.getCurrentPosition(),
left_back_drive.getCurrentPosition(),
right_back_drive.getCurrentPosition(),
right_front_drive.getCurrentPosition());
telemetry.update();
// Wait for the game to start (driver presses PLAY)
waitForStart();
// Step through each leg of the path,
// Note: Reverse movement is obtained by setting a negative distance (not speed)
encoderDrive(TURN_SPEED, -59, 59, 4.0); // S2: Turn left 12 Inches with 4 Sec timeout
encoderDrive(DRIVE_SPEED, 189, 189, 5.0); // S1: Forward 48 Inches with 5 Sec timeout
telemetry.addData("Path", "Complete");
telemetry.update();
sleep(1000); // pause to display final telemetry message.
}
/*
* Method to perform a relative move, based on encoder counts.
* Encoders are not reset as the move is based on the current position.
* Move will stop if any of three conditions occur:
* 1) Move gets to the desired position
* 2) Move runs out of time
* 3) Driver stops the OpMode running.
*/
public void encoderDrive(double speed,
double leftInches, double rightInches,
double timeoutS) {
int newLeftFrontTarget;
int newLeftBackTarget;
int newRightFrontTarget;
int newRightBackTarget;
//
if (opModeIsActive()) {
// Determine new target position, and pass to motor controller
newLeftFrontTarget = left_front_drive.getCurrentPosition() + (int)(leftInches * COUNTS_PER_INCH);
newLeftBackTarget = left_back_drive.getCurrentPosition() + (int)(leftInches * COUNTS_PER_INCH);
newRightFrontTarget = right_front_drive.getCurrentPosition() + (int)(rightInches * COUNTS_PER_INCH);
newRightBackTarget = right_back_drive.getCurrentPosition() + (int)(rightInches * COUNTS_PER_INCH);
left_front_drive.setTargetPosition(newLeftFrontTarget);
left_back_drive.setTargetPosition(newLeftFrontTarget);
right_front_drive.setTargetPosition(newRightFrontTarget);
right_back_drive.setTargetPosition(newRightBackTarget);
// Turn On RUN_TO_POSITION
left_front_drive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
left_back_drive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
right_front_drive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
right_back_drive.setMode(DcMotor.RunMode.RUN_TO_POSITION);
// reset the timeout time and start motion.
runtime.reset();
left_front_drive.setPower(Math.abs(speed));
left_back_drive.setPower(Math.abs(speed));
right_front_drive.setPower(Math.abs(speed));
right_back_drive.setPower(Math.abs(speed));
// keep looping while we are still active, and there is time left, and both motors are running.
// Note: We use (isBusy() && isBusy()) in the loop test, which means that when EITHER motor hits
// its target position, the motion will stop. This is "safer" in the event that the robot will
// always end the motion as soon as possible.
// However, if you require that BOTH motors have finished their moves before the robot continues
// onto the next step, use (isBusy() || isBusy()) in the loop test.
while (opModeIsActive() &&
(runtime.seconds() < timeoutS) &&
(left_front_drive.isBusy() && left_back_drive.isBusy() && right_front_drive.isBusy() && right_back_drive.isBusy())) {
//Display it for the driver.
telemetry.addData("Running to", " %7d :%7d", newLeftFrontTarget, newLeftBackTarget, newRightFrontTarget, newRightBackTarget);
telemetry.addData("Currently at", " at %7d :%7d",
left_front_drive.getCurrentPosition(), left_back_drive.getCurrentPosition(), right_front_drive.getCurrentPosition(), right_back_drive.getCurrentPosition());
telemetry.update();
}
// Stop all motion;
left_front_drive.setPower(0);
left_back_drive.setPower(0);
right_front_drive.setPower(0);
right_back_drive.setPower(0);
// Turn off RUN_TO_POSITION
left_front_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
left_back_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
right_front_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
right_back_drive.setMode(DcMotor.RunMode.RUN_USING_ENCODER);
sleep(250); // optional pause after each move.
}
}
}