forked from Sygil-Dev/muse-maskgit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_muse_maskgit.py
959 lines (893 loc) · 33.3 KB
/
train_muse_maskgit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
import argparse
import glob
import logging
import os
import re
from dataclasses import dataclass
from typing import Optional, Union
import accelerate
import datasets
import diffusers
import transformers
import wandb
from accelerate.utils import ProjectConfiguration
from datasets import load_dataset
from diffusers.optimization import SchedulerType, get_scheduler
from omegaconf import OmegaConf
from rich import inspect
from torch.optim import Optimizer
try:
import torch_xla
import torch_xla.core.xla_model as xm
except ImportError:
print("TPU support has been disabled, please install torch_xla and train on an XLA device")
torch_xla = None
xm = None
from muse_maskgit_pytorch import (
MaskGit,
MaskGitTrainer,
MaskGitTransformer,
VQGanVAE,
VQGanVAETaming,
get_accelerator,
)
from muse_maskgit_pytorch.dataset import (
ImageTextDataset,
LocalTextImageDataset,
URLTextDataset,
get_dataset_from_dataroot,
split_dataset_into_dataloaders,
)
from muse_maskgit_pytorch.trainers.base_accelerated_trainer import get_optimizer
# remove some unnecessary errors from transformer shown on the console.
transformers.logging.set_verbosity_error()
# disable bitsandbytes welcome message.
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
# Create the parser
parser = argparse.ArgumentParser()
parser.add_argument(
"--only_save_last_checkpoint",
action="store_true",
help="Only save last checkpoint.",
)
parser.add_argument(
"--validation_image_scale",
default=1.0,
type=float,
help="Factor by which to scale the validation images.",
)
parser.add_argument(
"--no_center_crop",
action="store_true",
help="Don't do center crop.",
)
parser.add_argument(
"--random_crop",
action="store_true",
help="Crop the images at random locations instead of cropping from the center.",
)
parser.add_argument(
"--no_flip",
action="store_true",
help="Don't flip image.",
)
parser.add_argument(
"--dataset_save_path",
type=str,
default="dataset",
help="Path to save the dataset if you are making one from a directory",
)
parser.add_argument(
"--clear_previous_experiments",
action="store_true",
help="Whether to clear previous experiments.",
)
parser.add_argument(
"--num_tokens",
type=int,
default=256,
help="Number of tokens. Must be same as codebook size above",
)
parser.add_argument(
"--seq_len",
type=int,
default=1024,
help="The sequence length. Must be equivalent to fmap_size ** 2 in vae",
)
parser.add_argument("--depth", type=int, default=2, help="The depth of model")
parser.add_argument("--dim_head", type=int, default=64, help="Attention head dimension")
parser.add_argument("--heads", type=int, default=8, help="Attention heads")
parser.add_argument("--ff_mult", type=int, default=4, help="Feed forward expansion factor")
parser.add_argument("--t5_name", type=str, default="t5-small", help="Name of your t5 model")
parser.add_argument("--cond_image_size", type=int, default=None, help="Conditional image size.")
parser.add_argument(
"--validation_prompt",
type=str,
default="A photo of a dog",
help="Validation prompt(s), pipe | separated",
)
parser.add_argument(
"--timesteps",
type=int,
default=18,
help="Number of steps to use when generating the validation image. Defautl: 18",
)
parser.add_argument("--max_grad_norm", type=float, default=None, help="Max gradient norm.")
parser.add_argument("--seed", type=int, default=42, help="Training seed.")
parser.add_argument(
"--valid_frac", type=float, default=0.05, help="Fraction of dataset to use for validation."
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use ema.")
parser.add_argument("--ema_beta", type=float, default=0.995, help="Ema beta.")
parser.add_argument("--ema_update_after_step", type=int, default=1, help="Ema update after step.")
parser.add_argument(
"--ema_update_every",
type=int,
default=1,
help="Ema update every this number of steps.",
)
parser.add_argument(
"--apply_grad_penalty_every",
type=int,
default=4,
help="Apply gradient penalty every this number of steps.",
)
parser.add_argument(
"--image_column",
type=str,
default="image",
help="The column of the dataset containing an image.",
)
parser.add_argument(
"--caption_column",
type=str,
default="caption",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--log_with",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--project_name",
type=str,
default="muse_maskgit",
help=("Name to use for the project to identify it when saved to a tracker such as wandb or tensorboard."),
)
parser.add_argument(
"--run_name",
type=str,
default=None,
help=(
"Name to use for the run to identify it when saved to a tracker such"
" as wandb or tensorboard. If not specified a random one will be generated."
),
)
parser.add_argument(
"--wandb_user",
type=str,
default=None,
help=(
"Specify the name for the user or the organization in which the project will be saved when using wand."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="Precision to train on.",
)
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether to use the 8bit adam optimiser",
)
parser.add_argument(
"--results_dir",
type=str,
default="results",
help="Path to save the training samples and checkpoints",
)
parser.add_argument(
"--logging_dir",
type=str,
default=None,
help="Path to log the losses and LR",
)
# vae_trainer args
parser.add_argument(
"--vae_path",
type=str,
default=None,
help="Path to the vae model. eg. 'results/vae.steps.pt'",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="ID of HuggingFace dataset to use (cannot be used with --train_data_dir)",
)
parser.add_argument(
"--hf_split_name",
type=str,
default="train",
help="Subset or split to use from the dataset when using a dataset form HuggingFace.",
)
parser.add_argument(
"--streaming",
action="store_true",
help="If using a HuggingFace dataset, whether to stream it or not.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help="Local dataset folder to use (cannot be used with --dataset_name)",
)
parser.add_argument(
"--num_train_steps",
type=int,
default=-1,
help="Total number of steps to train for. eg. 50000. | Use only if you want to stop training early",
)
parser.add_argument(
"--num_epochs",
type=int,
default=5,
help="Total number of epochs to train for. eg. 5.",
)
parser.add_argument(
"--dim",
type=int,
default=128,
help="Model dimension.",
)
parser.add_argument(
"--batch_size",
type=int,
default=512,
help="Batch Size.",
)
parser.add_argument(
"--lr",
type=float,
default=1e-4,
help="Learning Rate.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Gradient Accumulation Steps",
)
parser.add_argument(
"--save_results_every",
type=int,
default=100,
help="Save results every N steps.",
)
parser.add_argument(
"--save_model_every",
type=int,
default=500,
help="Save the model every N steps.",
)
parser.add_argument(
"--checkpoint_limit",
type=int,
default=None,
help="Keep only X number of checkpoints and delete the older ones.",
)
parser.add_argument(
"--vq_codebook_size",
type=int,
default=256,
help="Image Size.",
)
parser.add_argument("--vq_codebook_dim", type=int, default=256, help="VQ Codebook dimensions.")
parser.add_argument(
"--channels", type=int, default=3, help="Number of channels for the VAE. Use 3 for RGB or 4 for RGBA."
)
parser.add_argument("--layers", type=int, default=4, help="Number of layers for the VAE.")
parser.add_argument("--discr_layers", type=int, default=4, help="Number of layers for the VAE discriminator.")
parser.add_argument(
"--cond_drop_prob",
type=float,
default=0.5,
help="Conditional dropout, for classifier free guidance.",
)
parser.add_argument(
"--image_size",
type=int,
default=256,
help="Image size. You may want to start with small images, and then curriculum learn to larger ones, but because the vae is all convolution, it should generalize to 512 (as in paper) without training on it",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help='The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]',
)
parser.add_argument(
"--scheduler_power",
type=float,
default=1.0,
help="Controls the power of the polynomial decay schedule used by the CosineScheduleWithWarmup scheduler. "
"It determines the rate at which the learning rate decreases during the schedule.",
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--num_cycles",
type=int,
default=1,
help="Number of cycles for the lr scheduler.",
)
parser.add_argument(
"--resume_path",
type=str,
default=None,
help="Path to the last saved checkpoint. 'results/maskgit.steps.pt'",
)
parser.add_argument(
"--taming_model_path",
type=str,
default=None,
help="path to your trained VQGAN weights. This should be a .ckpt file. (only valid when taming option is enabled)",
)
parser.add_argument(
"--taming_config_path",
type=str,
default=None,
help="path to your trained VQGAN config. This should be a .yaml file. (only valid when taming option is enabled)",
)
parser.add_argument(
"--optimizer",
type=str,
default="Adafactor",
help="Optimizer to use. Choose between: ['Adam', 'AdamW','Lion', 'Adafactor', "
"'AdaBound', 'AdaMod', 'AccSGD', 'AdamP', 'AggMo', 'DiffGrad', 'Lamb', "
"'NovoGrad', 'PID', 'QHAdam', 'QHM', 'RAdam', 'SGDP', 'SGDW', 'Shampoo', "
"'SWATS', 'Yogi']. Default: Lion",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Optimizer weight_decay to use. Default: 0.0",
)
parser.add_argument(
"--cache_path",
type=str,
default=None,
help="The path to cache huggingface models",
)
parser.add_argument(
"--no_cache",
action="store_true",
help="Do not save the dataset pyarrow cache/files to disk to save disk space and reduce the time it takes to launch the training.",
)
parser.add_argument(
"--link",
action="store_true",
help="whether to load a dataset with links instead of image (image column becomes URL column)",
)
parser.add_argument(
"--latest_checkpoint",
action="store_true",
help="Automatically find and use the latest checkpoint in the folder.",
)
parser.add_argument(
"--do_not_save_config",
action="store_true",
default=False,
help="Generate example YAML configuration file",
)
parser.add_argument(
"--use_l2_recon_loss",
action="store_true",
help="Use F.mse_loss instead of F.l1_loss.",
)
parser.add_argument(
"--debug",
action="store_true",
help="debug logging on",
)
parser.add_argument(
"--config_path",
type=str,
default=None,
help="debug logging on",
)
parser.add_argument(
"--attention_type",
type=str,
default="flash",
help="what type of attention to use [ein, flash, xformers] | Default: flash",
)
@dataclass
class Arguments:
total_params: Optional[int] = None
only_save_last_checkpoint: bool = False
validation_image_scale: float = 1.0
no_center_crop: bool = False
no_flip: bool = False
dataset_save_path: Optional[str] = None
clear_previous_experiments: bool = False
num_tokens: int = 256
seq_len: int = 1024
depth: int = 2
dim_head: int = 64
heads: int = 8
ff_mult: int = 4
t5_name: str = "t5-small"
cond_image_size: Optional[int] = None
validation_prompt: str = "A photo of a dog"
timesteps: int = 18
max_grad_norm: Optional[float] = None
seed: int = 42
valid_frac: float = 0.05
use_ema: bool = False
ema_beta: float = 0.995
ema_update_after_step: int = 1
ema_update_every: int = 1
apply_grad_penalty_every: int = 4
image_column: str = "image"
caption_column: str = "caption"
log_with: str = "wandb"
mixed_precision: str = "no"
use_8bit_adam: bool = False
results_dir: str = "results"
logging_dir: Optional[str] = None
vae_path: Optional[str] = None
dataset_name: Optional[str] = None
hf_split_name: Optional[str] = None
streaming: bool = False
train_data_dir: Optional[str] = None
num_train_steps: int = -1
num_epochs: int = 5
dim: int = 128
batch_size: int = 512
lr: float = 1e-4
gradient_accumulation_steps: int = 1
save_results_every: int = 100
save_model_every: int = 500
checkpoint_limit: Union[int, str] = None
vq_codebook_size: int = 256
vq_codebook_dim: int = 256
cond_drop_prob: float = 0.5
image_size: int = 256
lr_scheduler: str = "constant"
scheduler_power: float = 1.0
lr_warmup_steps: int = 0
num_cycles: int = 1
resume_path: Optional[str] = None
taming_model_path: Optional[str] = None
taming_config_path: Optional[str] = None
optimizer: str = "Lion"
weight_decay: float = 0.0
cache_path: Optional[str] = None
no_cache: bool = False
link: bool = False
latest_checkpoint: bool = False
do_not_save_config: bool = False
use_l2_recon_loss: bool = False
debug: bool = False
config_path: Optional[str] = None
attention_type: str = "flash"
def main():
args = parser.parse_args(namespace=Arguments())
if accelerate.utils.is_rich_available():
from rich import print
from rich.traceback import install as traceback_install
traceback_install(show_locals=args.debug, width=120, word_wrap=True)
if args.config_path:
print("Using config file and ignoring CLI args")
try:
conf = OmegaConf.load(args.config_path)
conf_keys = conf.keys()
args_to_convert = vars(args)
for key in conf_keys:
try:
args_to_convert[key] = conf[key]
except KeyError:
print(f"Error parsing config - {key}: {conf[key]} | Using default or parsed")
except FileNotFoundError:
print("Could not find config, using default and parsed values...")
# Set up debug logging as early as possible
if args.debug is True:
logging.basicConfig(level=logging.DEBUG)
transformers.logging.set_verbosity_debug()
datasets.logging.set_verbosity_debug()
diffusers.logging.set_verbosity_debug()
else:
logging.basicConfig(level=logging.INFO)
project_config = ProjectConfiguration(
project_dir=args.logging_dir if args.logging_dir else os.path.join(args.results_dir, "logs"),
total_limit=args.checkpoint_limit,
automatic_checkpoint_naming=True,
)
accelerator: accelerate.Accelerator = get_accelerator(
log_with=args.log_with,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
project_config=project_config,
even_batches=True,
)
# Get these errors out of the way early
if args.vae_path and args.taming_model_path:
raise ValueError("Can't pass both vae_path and taming_model_path at the same time!")
if args.train_data_dir and args.dataset_name:
raise ValueError("Can't pass both train_data_dir and dataset_name at the same time!")
if accelerator.is_main_process:
accelerator.print(f"Preparing MaskGit for training on {accelerator.device.type}")
if args.debug:
inspect(args, docs=False)
accelerate.utils.set_seed(args.seed)
# Load the dataset (main process first to download, rest will load from cache)
with accelerator.main_process_first():
if args.train_data_dir is not None:
if args.no_cache:
pass
else:
dataset = get_dataset_from_dataroot(
args.train_data_dir,
image_column=args.image_column,
caption_column=args.caption_column,
save_path=args.dataset_save_path,
)
elif args.dataset_name is not None:
dataset = load_dataset(
args.dataset_name,
streaming=args.streaming,
cache_dir=args.cache_path,
save_infos=True,
split="train",
)
if args.streaming:
if args.cache_path:
dataset = load_dataset(args.dataset_name, cache_dir=args.cache_path)[args.hf_split_name]
else:
dataset = load_dataset(args.dataset_name)[args.hf_split_name]
else:
raise ValueError("You must pass either train_data_dir or dataset_name (but not both)")
# Load the VAE
with accelerator.main_process_first():
if args.vae_path:
print("Loading Muse VQGanVAE")
if args.latest_checkpoint:
print("Finding latest VAE checkpoint...")
orig_vae_path = args.vae_path
if os.path.isfile(args.vae_path) or ".pt" in args.vae_path:
# If args.vae_path is a file, split it into directory and filename
args.vae_path, _ = os.path.split(args.vae_path)
checkpoint_files = glob.glob(os.path.join(args.vae_path, "vae.*.pt"))
if checkpoint_files:
latest_checkpoint_file = max(
checkpoint_files, key=lambda x: int(re.search(r"vae\.(\d+)\.pt", x).group(1))
)
# Check if latest checkpoint is empty or unreadable
if os.path.getsize(latest_checkpoint_file) == 0 or not os.access(
latest_checkpoint_file, os.R_OK
):
print(
f"Warning: latest VAE checkpoint {latest_checkpoint_file} is empty or unreadable."
)
if len(checkpoint_files) > 1:
# Use the second last checkpoint as a fallback
latest_checkpoint_file = max(
checkpoint_files[:-1],
key=lambda x: int(re.search(r"vae\.(\d+)\.pt", x).group(1)),
)
print("Using second last VAE checkpoint: ", latest_checkpoint_file)
else:
print("No usable checkpoint found.")
elif latest_checkpoint_file != orig_vae_path:
print("Resuming VAE from latest checkpoint: ", latest_checkpoint_file)
else:
print("Using VAE checkpoint specified in vae_path: ", orig_vae_path)
args.vae_path = latest_checkpoint_file
else:
print("No VAE checkpoints found in directory: ", args.vae_path)
else:
print("Resuming VAE from: ", args.vae_path)
# use config next to checkpoint if there is one and merge the cli arguments to it
# the cli arguments will take priority so we can use it to override any value we want.
# if os.path.exists(f"{args.vae_path}.yaml"):
# print("Config file found, reusing config from it. Use cli arguments to override any desired value.")
# conf = OmegaConf.load(f"{args.vae_path}.yaml")
# cli_conf = OmegaConf.from_cli()
## merge the config file and the cli arguments.
# conf = OmegaConf.merge(conf, cli_conf)
vae = VQGanVAE(
dim=args.dim,
vq_codebook_dim=args.vq_codebook_dim,
vq_codebook_size=args.vq_codebook_size,
l2_recon_loss=args.use_l2_recon_loss,
channels=args.channels,
layers=args.layers,
discr_layers=args.discr_layers,
).to(accelerator.device)
vae.load(args.vae_path)
elif args.taming_model_path is not None and args.taming_config_path is not None:
print(f"Using Taming VQGanVAE, loading from {args.taming_model_path}")
vae = VQGanVAETaming(
vqgan_model_path=args.taming_model_path,
vqgan_config_path=args.taming_config_path,
accelerator=accelerator,
)
args.num_tokens = vae.codebook_size
args.seq_len = vae.get_encoded_fmap_size(args.image_size) ** 2
else:
raise ValueError(
"You must pass either vae_path or taming_model_path + taming_config_path (but not both)"
)
# freeze VAE before parsing to transformer
vae.requires_grad_(False)
# then you plug the vae and transformer into your MaskGit like so:
# (1) create your transformer / attention network
if args.attention_type == "flash":
xformers = False
flash = True
elif args.attention_type == "xformers":
xformers = True
flash = True
elif args.attention_type == "ein":
xformers = False
flash = False
else:
raise NotImplementedError(f'Attention of type "{args.attention_type}" does not exist')
transformer: MaskGitTransformer = MaskGitTransformer(
# num_tokens must be same as codebook size above
num_tokens=args.num_tokens if args.num_tokens else args.vq_codebook_size,
# seq_len must be equivalent to fmap_size ** 2 in vae
seq_len=args.seq_len,
dim=args.dim,
depth=args.depth,
dim_head=args.dim_head,
heads=args.heads,
# feedforward expansion factor
ff_mult=args.ff_mult,
# name of your T5 model configuration
t5_name=args.t5_name,
cache_path=args.cache_path,
flash=flash,
xformers=xformers,
)
# (2) pass your trained VAE and the base transformer to MaskGit
maskgit = MaskGit(
vae=vae, # vqgan vae
transformer=transformer, # transformer
accelerator=accelerator, # accelerator
image_size=args.image_size, # image size
cond_drop_prob=args.cond_drop_prob, # conditional dropout, for classifier free guidance
cond_image_size=args.cond_image_size,
)
# load the maskgit transformer from disk if we have previously trained one
with accelerator.main_process_first():
if args.resume_path is not None and len(args.resume_path) > 1:
load = True
accelerator.print("Loading Muse MaskGit...")
if args.latest_checkpoint:
accelerator.print("Finding latest MaskGit checkpoint...")
orig_vae_path = args.resume_path
if os.path.isfile(args.resume_path) or ".pt" in args.resume_path:
# If args.resume_path is a file, split it into directory and filename
args.resume_path, _ = os.path.split(args.resume_path)
if args.cond_image_size:
checkpoint_files = glob.glob(os.path.join(args.resume_path, "maskgit_superres.*.pt"))
else:
checkpoint_files = glob.glob(os.path.join(args.resume_path, "maskgit.*.pt"))
if checkpoint_files:
if args.cond_image_size:
latest_checkpoint_file = max(
checkpoint_files,
key=lambda x: int(re.search(r"maskgit_superres\.(\d+)\.pt", x).group(1)),
)
else:
latest_checkpoint_file = max(
checkpoint_files, key=lambda x: int(re.search(r"maskgit\.(\d+)\.pt", x).group(1))
)
# Check if latest checkpoint is empty or unreadable
if os.path.getsize(latest_checkpoint_file) == 0 or not os.access(
latest_checkpoint_file, os.R_OK
):
accelerator.print(
f"Warning: latest MaskGit checkpoint {latest_checkpoint_file} is empty or unreadable."
)
if len(checkpoint_files) > 1:
# Use the second last checkpoint as a fallback
if args.cond_image_size:
latest_checkpoint_file = max(
checkpoint_files[:-1],
key=lambda x: int(re.search(r"maskgit_superres\.(\d+)\.pt", x).group(1)),
)
else:
latest_checkpoint_file = max(
checkpoint_files[:-1],
key=lambda x: int(re.search(r"maskgit\.(\d+)\.pt", x).group(1)),
)
accelerator.print(
"Using second last MaskGit checkpoint: ", latest_checkpoint_file
)
else:
accelerator.print("No usable MaskGit checkpoint found.")
load = False
elif latest_checkpoint_file != orig_vae_path:
accelerator.print("Resuming MaskGit from latest checkpoint: ", latest_checkpoint_file)
else:
accelerator.print(
"Using MaskGit checkpoint specified in resume_path: ", orig_vae_path
)
args.resume_path = latest_checkpoint_file
else:
accelerator.print("No MaskGit checkpoints found in directory: ", args.resume_path)
load = False
else:
accelerator.print("Resuming MaskGit from: ", args.resume_path)
if load:
maskgit.load(args.resume_path)
resume_from_parts = args.resume_path.split(".")
for i in range(len(resume_from_parts) - 1, -1, -1):
if resume_from_parts[i].isdigit():
current_step = int(resume_from_parts[i])
accelerator.print(f"Found step {current_step} for the MaskGit model.")
break
if current_step == 0:
accelerator.print("No step found for the MaskGit model.")
else:
current_step = 0
else:
accelerator.print("Initialized new empty MaskGit model.")
current_step = 0
# Use the parameters() method to get an iterator over all the learnable parameters of the model
total_params = sum(p.numel() for p in maskgit.parameters())
args.total_params = total_params
print(f"Total number of parameters: {format(total_params, ',d')}")
# Create the dataset objects
with accelerator.main_process_first():
if args.no_cache and args.train_data_dir:
dataset = LocalTextImageDataset(
args.train_data_dir,
args.image_size,
tokenizer=transformer.tokenizer,
center_crop=False if args.no_center_crop else True,
flip=False if args.no_flip else True,
using_taming=False if not args.taming_model_path else True,
random_crop=args.random_crop if args.random_crop else False,
alpha_channel=False if args.channels == 3 else True,
)
elif args.link:
if not args.dataset_name:
raise AssertionError("You can only use links in huggingface datasets")
dataset = URLTextDataset(
dataset,
args.image_size,
transformer.tokenizer,
image_column=args.image_column,
caption_column=args.caption_column,
center_crop=False if args.no_center_crop else True,
flip=False if args.no_flip else True,
using_taming=False if not args.taming_model_path else True,
)
else:
dataset = ImageTextDataset(
dataset,
args.image_size,
transformer.tokenizer,
image_column=args.image_column,
caption_column=args.caption_column,
center_crop=False if args.no_center_crop else True,
flip=False if args.no_flip else True,
stream=args.streaming,
using_taming=False if not args.taming_model_path else True,
)
# Create the dataloaders
dataloader, validation_dataloader = split_dataset_into_dataloaders(
dataset,
args.valid_frac if not args.streaming else 0,
args.seed,
args.batch_size,
)
# Create the optimizer and scheduler, wrap optimizer in scheduler
optimizer: Optimizer = get_optimizer(
args.use_8bit_adam, args.optimizer, set(transformer.parameters()), args.lr, args.weight_decay
)
if args.num_train_steps > 0:
num_lr_steps = args.num_train_steps * args.gradient_accumulation_steps
else:
num_lr_steps = args.num_epochs * len(dataloader)
scheduler: SchedulerType = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=num_lr_steps,
num_cycles=args.num_cycles,
power=args.scheduler_power,
)
# Prepare the model, optimizer, and dataloaders for distributed training
maskgit, optimizer, dataloader, validation_dataloader, scheduler = accelerator.prepare(
maskgit, optimizer, dataloader, validation_dataloader, scheduler
)
# Wait for everyone to catch up, then print some info and initialize the trackers
accelerator.wait_for_everyone()
accelerator.print(f"[{accelerator.process_index}] Ready to create trainer!")
if accelerator.distributed_type == accelerate.DistributedType.TPU:
proc_idx = accelerator.process_index + 1
n_procs = accelerator.num_processes
local_proc_idx = accelerator.local_process_index + 1
xm_ord = xm.get_ordinal() + 1
xm_world = xm.xrt_world_size()
xm_local_ord = xm.get_local_ordinal() + 1
xm_master_ord = xm.is_master_ordinal()
is_main = accelerator.is_main_process
is_local_main = accelerator.is_local_main_process
with accelerator.local_main_process_first():
print(
f"[P{proc_idx:03d}]: PID {proc_idx}/{n_procs}, local #{local_proc_idx}, ",
f"XLA ord={xm_ord}/{xm_world}, local={xm_local_ord}, master={xm_master_ord} ",
f"Accelerate: main={is_main}, local main={is_local_main} ",
)
if accelerator.is_main_process:
accelerator.init_trackers(
args.project_name,
config=vars(args),
init_kwargs={
"wandb": {
"entity": f"{args.wandb_user or wandb.api.default_entity}",
"name": args.run_name,
},
},
)
# Create the trainer
accelerator.wait_for_everyone()
trainer = MaskGitTrainer(
maskgit=maskgit,
dataloader=dataloader,
valid_dataloader=validation_dataloader,
accelerator=accelerator,
optimizer=optimizer,
scheduler=scheduler,
current_step=current_step + 1 if current_step != 0 else current_step,
num_train_steps=args.num_train_steps,
batch_size=args.batch_size,
max_grad_norm=args.max_grad_norm,
save_results_every=args.save_results_every,
save_model_every=args.save_model_every,
results_dir=args.results_dir,
logging_dir=args.logging_dir if args.logging_dir else os.path.join(args.results_dir, "logs"),
use_ema=args.use_ema,
ema_update_after_step=args.ema_update_after_step,
ema_update_every=args.ema_update_every,
apply_grad_penalty_every=args.apply_grad_penalty_every,
gradient_accumulation_steps=args.gradient_accumulation_steps,
validation_prompts=args.validation_prompt.split("|"),
timesteps=args.timesteps,
clear_previous_experiments=args.clear_previous_experiments,
validation_image_scale=args.validation_image_scale,
only_save_last_checkpoint=args.only_save_last_checkpoint,
num_epochs=args.num_epochs,
args=args,
)
# Prepare the trainer for distributed training
accelerator.print("MaskGit Trainer initialized, preparing for training...")
trainer = accelerator.prepare(trainer)
# Train the model!
accelerator.print("Starting training!")
trainer.train()
# Clean up and wait for other processes to finish (loggers etc.)
if accelerator.is_main_process:
accelerator.print("Training complete!")
accelerator.end_training()
if __name__ == "__main__":
main()