-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainer.py
365 lines (329 loc) · 14.6 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import numpy as np
from tqdm import tqdm
import torch
import torch.optim as optim
from torch.nn.utils.clip_grad import clip_grad_norm_
from logging import getLogger
from time import time
from evaluator import Evaluator, Collector
from recbole.trainer import Trainer as RecBole_Trainer
from recbole.data.dataloader import UserDataLoader
from recbole.utils import (
ensure_dir,
get_local_time,
early_stopping,
dict2str,
get_tensorboard,
set_color,
WandbLogger,
)
class Trainer(RecBole_Trainer):
def __init__(self, config, model):
self.config = config
self.model = model
self.logger = getLogger()
self.tensorboard = get_tensorboard(self.logger)
self.wandblogger = WandbLogger(config)
self.learner = config["learner"]
self.learning_rate = config["learning_rate"]
self.epochs = config["epochs"]
self.eval_step = min(config["eval_step"], self.epochs)
self.stopping_step = config["stopping_step"]
self.clip_grad_norm = config["clip_grad_norm"]
self.valid_metric = config["valid_metric"].lower()
self.valid_metric_bigger = config["valid_metric_bigger"]
self.test_batch_size = config["eval_batch_size"]
self.gpu_available = torch.cuda.is_available() and config["use_gpu"]
self.device = config["device"]
self.checkpoint_dir = config["checkpoint_dir"]
self.enable_amp = config["enable_amp"]
self.enable_scaler = torch.cuda.is_available() and config["enable_scaler"]
ensure_dir(self.checkpoint_dir)
saved_model_file = "{}-{}.pth".format(self.config["model"], get_local_time())
self.saved_model_file = os.path.join(self.checkpoint_dir, saved_model_file)
self.weight_decay = config["weight_decay"]
self.start_epoch = 0
self.cur_step = 0
self.best_valid_score = -np.inf if self.valid_metric_bigger else np.inf
self.best_valid_result = None
self.train_loss_dict = dict()
self.optimizer = self._build_optimizer()
self.eval_type = config["eval_type"]
self.eval_collector = Collector(config)
self.evaluator = Evaluator(config)
self.item_tensor = None
self.tot_item_num = None
def train_weight_epoch(
self, weight_epoch_idx=0, weight_data=None, show_progress=False
):
self.model.train()
total_loss = None
iter_data = (
tqdm(
weight_data,
total=len(weight_data),
ncols=100,
desc=set_color(f"Train weight epoch {weight_epoch_idx:>5}", "pink"),
)
if show_progress
else weight_data
)
optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)
for batch_idx, interaction in enumerate(iter_data):
interaction = interaction.to(self.device)
optimizer.zero_grad()
losses = self.model.weight_loss(interaction)
if isinstance(losses, tuple):
loss = sum(losses)
loss_tuple = tuple(per_loss.item() for per_loss in losses)
total_loss = (
loss_tuple
if total_loss is None
else tuple(map(sum, zip(total_loss, loss_tuple)))
)
else:
loss = losses
total_loss = (
losses.item() if total_loss is None else total_loss + losses.item()
)
self._check_nan(loss)
loss.backward()
if self.clip_grad_norm:
clip_grad_norm_(self.model.parameters(), **self.clip_grad_norm)
optimizer.step()
self.logger.info(
"Train Weiht Loss " + str(weight_epoch_idx) + " loss: " + str(total_loss)
)
return total_loss
def get_fairness_weight(self, item_provider, used_ids):
# get the user scores of all items
interaction = {}
interaction["user_id"] = torch.arange(1, self.model.n_users).to(
self.model.device
)
user_scores = (
self.model.full_sort_predict(interaction)
.reshape(-1, self.model.n_items)
.detach()
)
user_scores[:, 0] = 0
_, item_matrix = torch.topk(user_scores, 100, dim=-1)
item_matrix = np.array(item_matrix.cpu())
k = item_matrix.shape[1]
user_num = item_matrix.shape[0]
score = 1 / np.log2(np.arange(2, 2 + k))
item_cnt = len(item_provider)
exposure_score = np.zeros(item_cnt)
user_utility = np.zeros(user_num)
for idx, rec_u in enumerate(item_matrix):
history_item_id = set(used_ids[idx + 1])
for i in range(k):
exposure_score[rec_u[i]] += score[i]
if rec_u[i] in history_item_id:
user_utility[idx] += score[i]
if history_item_id:
user_utility[idx] = user_utility[idx] / len(history_item_id)
# count item num of each provider
provider_cnt = np.max(item_provider) + 1
provider_num_items = np.zeros((provider_cnt,))
for _, provider in enumerate(item_provider):
provider_num_items[provider] += 1
provider_num_items[0] = 1
# calculate the exposure score of each provider
provider_exposure_score = np.zeros((item_cnt, len(provider_num_items)))
provider_exposure_score[np.arange(item_cnt), item_provider] = exposure_score
provider_exposure_score = provider_exposure_score.sum(0)
provider_exposure_score = provider_exposure_score / provider_num_items
# estimate provider-side exposure score
provider_exposure_score = pow(
provider_exposure_score, self.config["provider_eta"]
)
provider_exposure_score = 1 / (provider_exposure_score + self.config["delta"])
provider_fairness_weight = provider_exposure_score[item_provider]
provider_fairness_weight = torch.tensor(provider_fairness_weight).to(
self.model.device
)
# estimate customer-side utility score
user_utility = pow(user_utility, self.config["user_eta"])
user_utility = 1 / (user_utility + self.config["delta"])
user_utility = np.concatenate((np.zeros(1), user_utility))
user_utility = torch.tensor(user_utility).to(self.model.device)
return provider_fairness_weight, user_utility
def fit(
self,
train_data,
valid_data=None,
verbose=True,
saved=True,
show_progress=False,
callback_fn=None,
):
r"""Train the model based on the train data and the valid data.
Args:
train_data (DataLoader): the train data
valid_data (DataLoader, optional): the valid data, default: None.
If it's None, the early_stopping is invalid.
verbose (bool, optional): whether to write training and evaluation information to logger, default: True
saved (bool, optional): whether to save the model parameters, default: True
show_progress (bool): Show the progress of training epoch and evaluate epoch. Defaults to ``False``.
callback_fn (callable): Optional callback function executed at end of epoch.
Includes (epoch_idx, valid_score) input arguments.
Returns:
(float, dict): best valid score and best valid result. If valid_data is None, it returns (-1, None)
"""
if saved and self.start_epoch >= self.epochs:
self._save_checkpoint(-1, verbose=verbose)
self.eval_collector.data_collect(train_data)
if self.config["train_neg_sample_args"].get("dynamic", "none") != "none":
train_data.get_model(self.model)
valid_step = 0
num_users = train_data.dataset.num(self.config["USER_ID_FIELD"])
user_counter = train_data.dataset.user_counter
# get the user popularity for fairness sampling
user_popularity = np.zeros(num_users)
for user_id, count_user in user_counter.items():
user_popularity[user_id] = count_user
num_items = train_data.dataset.num(self.config["ITEM_ID_FIELD"])
item_counter = train_data.dataset.item_counter
# get the item popularity for fairness sampling
item_popularity = np.zeros(num_items)
for item_id, count_item in item_counter.items():
item_popularity[item_id] = count_item
item_popularity = item_popularity / item_popularity.sum()
for epoch_idx in range(self.start_epoch, self.epochs):
# train
training_start_time = time()
if self.config["fairness_type"] is not None:
item_provider = train_data.dataset.get_item_feature()[
self.config["PRODIVER_ID_FIELD"]
].numpy()
used_ids = train_data._sampler.get_used_ids()["train"]
(
provider_fairness_weight,
user_fairness_weight,
) = self.get_fairness_weight(item_provider, used_ids)
# weight normalization
provider_fairness_weight[0] = 0
provider_fairness_weight_sum = provider_fairness_weight[
train_data.dataset.inter_feat[self.config["ITEM_ID_FIELD"]]
.cpu()
.numpy()
].sum()
provider_fairness_weight = (
provider_fairness_weight
/ provider_fairness_weight_sum
* len(train_data.dataset)
)
user_fairness_weight[0] = 0
user_fairness_weight_sum = user_fairness_weight[
train_data.dataset.inter_feat[self.config["USER_ID_FIELD"]]
.cpu()
.numpy()
].sum()
user_fairness_weight = (
user_fairness_weight
/ user_fairness_weight_sum
* len(train_data.dataset)
)
# weight update for iterative models
self.model.fairness_weight = (
provider_fairness_weight,
user_fairness_weight,
)
weight_data = UserDataLoader(
self.config, train_data.dataset, train_data.sampler, shuffle=True
)
# Two-sided fairness aware weight generation
for weight_epoch_idx in range(self.config["weight_epochs"]):
weight_loss = self.train_weight_epoch(
weight_epoch_idx, weight_data, show_progress=show_progress
)
del provider_fairness_weight
del user_fairness_weight
self.model.fairness_weight = torch.zeros(num_users, num_items)
for _, interaction in enumerate(weight_data):
user = interaction[self.model.USER_ID]
self.model.fairness_weight[user.cpu()] = (
self.model.encoder(self.model.rating_matrix[user].float())
.detach()
.cpu()
)
train_loss = self._train_epoch(
train_data, epoch_idx, show_progress=show_progress
)
else:
train_loss = self._train_epoch(
train_data, epoch_idx, show_progress=show_progress
)
self.train_loss_dict[epoch_idx] = (
sum(train_loss) if isinstance(train_loss, tuple) else train_loss
)
training_end_time = time()
train_loss_output = self._generate_train_loss_output(
epoch_idx, training_start_time, training_end_time, train_loss
)
if verbose:
self.logger.info(train_loss_output)
self._add_train_loss_to_tensorboard(epoch_idx, train_loss)
self.wandblogger.log_metrics(
{"epoch": epoch_idx, "train_loss": train_loss, "train_step": epoch_idx},
head="train",
)
# eval
if self.eval_step <= 0 or not valid_data:
if saved:
self._save_checkpoint(epoch_idx, verbose=verbose)
continue
if (epoch_idx + 1) % self.eval_step == 0:
valid_start_time = time()
valid_score, valid_result = self._valid_epoch(
valid_data, show_progress=show_progress
)
(
self.best_valid_score,
self.cur_step,
stop_flag,
update_flag,
) = early_stopping(
valid_score,
self.best_valid_score,
self.cur_step,
max_step=self.stopping_step,
bigger=self.valid_metric_bigger,
)
valid_end_time = time()
valid_score_output = (
set_color("epoch %d evaluating", "green")
+ " ["
+ set_color("time", "blue")
+ ": %.2fs, "
+ set_color("valid_score", "blue")
+ ": %f]"
) % (epoch_idx, valid_end_time - valid_start_time, valid_score)
valid_result_output = (
set_color("valid result", "blue") + ": \n" + dict2str(valid_result)
)
if verbose:
self.logger.info(valid_score_output)
self.logger.info(valid_result_output)
self.tensorboard.add_scalar("Vaild_score", valid_score, epoch_idx)
self.wandblogger.log_metrics(
{**valid_result, "valid_step": valid_step}, head="valid"
)
if update_flag:
if saved:
self._save_checkpoint(epoch_idx, verbose=verbose)
self.best_valid_result = valid_result
if callback_fn:
callback_fn(epoch_idx, valid_score)
if stop_flag:
stop_output = "Finished training, best eval result in epoch %d" % (
epoch_idx - self.cur_step * self.eval_step
)
if verbose:
self.logger.info(stop_output)
break
valid_step += 1
self._add_hparam_to_tensorboard(self.best_valid_score)
return self.best_valid_score, self.best_valid_result