forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
upernet_convnext_small_fp16_512x512_160k_ade20k.py
54 lines (51 loc) · 1.56 KB
/
upernet_convnext_small_fp16_512x512_160k_ade20k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
_base_ = [
'../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
crop_size = (512, 512)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth' # noqa
model = dict(
backbone=dict(
type='mmcls.ConvNeXt',
arch='small',
out_indices=[0, 1, 2, 3],
drop_path_rate=0.3,
layer_scale_init_value=1.0,
gap_before_final_norm=False,
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file,
prefix='backbone.')),
decode_head=dict(
in_channels=[96, 192, 384, 768],
num_classes=150,
),
auxiliary_head=dict(in_channels=384, num_classes=150),
test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)),
)
optimizer = dict(
constructor='LearningRateDecayOptimizerConstructor',
_delete_=True,
type='AdamW',
lr=0.0001,
betas=(0.9, 0.999),
weight_decay=0.05,
paramwise_cfg={
'decay_rate': 0.9,
'decay_type': 'stage_wise',
'num_layers': 12
})
lr_config = dict(
_delete_=True,
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0,
min_lr=0.0,
by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data = dict(samples_per_gpu=2)
# fp16 settings
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
# fp16 placeholder
fp16 = dict()