-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathAIMakeup.py
347 lines (302 loc) · 13.1 KB
/
AIMakeup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import cv2
import dlib
import numpy as np
import imutils
predictor_path = "./data/shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
class NoFace(Exception):
'''
没脸
'''
pass
class Organ():
def __init__(self, im_bgr, im_hsv, temp_bgr, temp_hsv, landmark, name, ksize=None):
'''
五官部位类
'''
self.im_bgr, self.im_hsv, self.landmark, self.name = im_bgr, im_hsv, landmark, name
self.get_rect()
self.shape = (int(self.bottom-self.top), int(self.right-self.left))
self.size = self.shape[0]*self.shape[1]*3
self.move = int(np.sqrt(self.size/3)/20)
self.ksize = self.get_ksize()
self.patch_bgr, self.patch_hsv = self.get_patch(
self.im_bgr), self.get_patch(self.im_hsv)
self.set_temp(temp_bgr, temp_hsv)
self.patch_mask = self.get_mask_re()
pass
def set_temp(self, temp_bgr, temp_hsv):
self.im_bgr_temp, self.im_hsv_temp = temp_bgr, temp_hsv
self.patch_bgr_temp, self.patch_hsv_temp = self.get_patch(
self.im_bgr_temp), self.get_patch(self.im_hsv_temp)
def confirm(self):
'''
确认操作
'''
self.im_bgr[:], self.im_hsv[:] = self.im_bgr_temp[:], self.im_hsv_temp[:]
def update_temp(self):
'''
更新临时图片
'''
self.im_bgr_temp[:], self.im_hsv_temp[:] = self.im_bgr[:], self.im_hsv[:]
def get_ksize(self, rate=15):
size = max([int(np.sqrt(self.size/3)/rate), 1])
size = (size if size % 2 == 1 else size+1)
return (size, size)
def get_rect(self):
'''
获得定位方框
'''
ys, xs = self.landmark[:, 1], self.landmark[:, 0]
self.top, self.bottom, self.left, self.right = np.min(
ys), np.max(ys), np.min(xs), np.max(xs)
def get_patch(self, im):
'''
截取局部切片
'''
shape = im.shape
x = im[np.max([self.top-self.move, 0]):np.min([self.bottom+self.move, shape[0]]),
np.max([self.left-self.move, 0]):np.min([self.right+self.move, shape[1]])]
return x
def _draw_convex_hull(self, im, points, color):
'''
勾画多凸边形
'''
points = cv2.convexHull(points)
cv2.fillConvexPoly(im, points, color=color)
def get_mask_re(self, ksize=None):
'''
获得局部相对坐标遮罩
'''
if ksize == None:
ksize = self.ksize
landmark_re = self.landmark.copy()
landmark_re[:, 1] -= np.max([self.top-self.move, 0])
landmark_re[:, 0] -= np.max([self.left-self.move, 0])
mask = np.zeros(self.patch_bgr.shape[:2], dtype=np.float64)
self._draw_convex_hull(mask,
landmark_re,
color=1)
mask = np.array([mask, mask, mask]).transpose((1, 2, 0))
mask = (cv2.GaussianBlur(mask, ksize, 0) > 0) * 1.0
return cv2.GaussianBlur(mask, ksize, 0)[:]
def get_mask_abs(self, ksize=None):
'''
获得全局绝对坐标遮罩
'''
if ksize == None:
ksize = self.ksize
mask = np.zeros(self.im_bgr.shape, dtype=np.float64)
patch = self.get_patch(mask)
patch[:] = self.patch_mask[:]
return mask
def whitening(self, rate=0.15, confirm=True):
'''
提亮美白
'''
if confirm:
self.confirm()
self.patch_hsv[:, :, -1] = np.minimum(self.patch_hsv[:, :, -1]+self.patch_hsv[:, :, -1]
* self.patch_mask[:, :, -1]*rate, 255).astype('uint8')
self.im_bgr[:] = cv2.cvtColor(self.im_hsv, cv2.COLOR_HSV2BGR)[:]
self.update_temp()
else:
self.patch_hsv_temp[:] = cv2.cvtColor(
self.patch_bgr_temp, cv2.COLOR_BGR2HSV)[:]
self.patch_hsv_temp[:, :, -1] = np.minimum(self.patch_hsv_temp[:, :, -1] +
self.patch_hsv_temp[:, :, -1]*self.patch_mask[:, :, -1]*rate, 255).astype('uint8')
self.patch_bgr_temp[:] = cv2.cvtColor(
self.patch_hsv_temp, cv2.COLOR_HSV2BGR)[:]
def brightening(self, rate=0.3, confirm=True):
'''
提升鲜艳度
'''
patch_mask = self.get_mask_re((1, 1))
if confirm:
self.confirm()
patch_new = self.patch_hsv[:, :, 1]*patch_mask[:, :, 1]*rate
patch_new = cv2.GaussianBlur(patch_new, (3, 3), 0)
self.patch_hsv[:, :, 1] = np.minimum(
self.patch_hsv[:, :, 1]+patch_new, 255).astype('uint8')
self.im_bgr[:] = cv2.cvtColor(self.im_hsv, cv2.COLOR_HSV2BGR)[:]
self.update_temp()
else:
self.patch_hsv_temp[:] = cv2.cvtColor(
self.patch_bgr_temp, cv2.COLOR_BGR2HSV)[:]
patch_new = self.patch_hsv_temp[:, :, 1]*patch_mask[:, :, 1]*rate
patch_new = cv2.GaussianBlur(patch_new, (3, 3), 0)
self.patch_hsv_temp[:, :, 1] = np.minimum(
self.patch_hsv[:, :, 1]+patch_new, 255).astype('uint8')
self.patch_bgr_temp[:] = cv2.cvtColor(
self.patch_hsv_temp, cv2.COLOR_HSV2BGR)[:]
def smooth(self, rate=0.6, ksize=(7, 7), confirm=True):
'''
磨皮
'''
if ksize == None:
ksize = self.get_ksize(80)
index = self.patch_mask > 0
if confirm:
self.confirm()
patch_new = cv2.GaussianBlur(cv2.bilateralFilter(
self.patch_bgr, 3, *ksize), ksize, 0)
self.patch_bgr[index] = np.minimum(
rate*patch_new[index]+(1-rate)*self.patch_bgr[index], 255).astype('uint8')
self.im_hsv[:] = cv2.cvtColor(self.im_bgr, cv2.COLOR_BGR2HSV)[:]
self.update_temp()
else:
patch_new = cv2.GaussianBlur(cv2.bilateralFilter(
self.patch_bgr_temp, 3, *ksize), ksize, 0)
self.patch_bgr_temp[index] = np.minimum(
rate*patch_new[index]+(1-rate)*self.patch_bgr_temp[index], 255).astype('uint8')
self.patch_hsv_temp[:] = cv2.cvtColor(
self.patch_bgr_temp, cv2.COLOR_BGR2HSV)[:]
def sharpen(self, rate=0.3, confirm=True):
'''
锐化
'''
patch_mask = self.get_mask_re((3, 3))
kernel = np.zeros((9, 9), np.float32)
kernel[4, 4] = 2.0 # Identity, times two!
# Create a box filter:
boxFilter = np.ones((9, 9), np.float32) / 81.0
# Subtract the two:
kernel = kernel - boxFilter
index = patch_mask > 0
if confirm:
self.confirm()
sharp = cv2.filter2D(self.patch_bgr, -1, kernel)
self.patch_bgr[index] = np.minimum(
((1-rate)*self.patch_bgr)[index]+sharp[index]*rate, 255).astype('uint8')
self.update_temp()
else:
sharp = cv2.filter2D(self.patch_bgr_temp, -1, kernel)
self.patch_bgr_temp[:] = np.minimum(
self.patch_bgr_temp+self.patch_mask*sharp*rate, 255).astype('uint8')
self.patch_hsv_temp[:] = cv2.cvtColor(
self.patch_bgr_temp, cv2.COLOR_BGR2HSV)[:]
class Forehead(Organ):
def __init__(self, im_bgr, im_hsv, temp_bgr, temp_hsv, landmark, mask_organs, name, ksize=None):
self.mask_organs = mask_organs
super(Forehead, self).__init__(im_bgr, im_hsv,
temp_bgr, temp_hsv, landmark, name, ksize)
def get_mask_re(self, ksize=None):
'''
获得局部相对坐标遮罩
'''
if ksize == None:
ksize = self.ksize
landmark_re = self.landmark.copy()
landmark_re[:, 1] -= np.max([self.top-self.move, 0])
landmark_re[:, 0] -= np.max([self.left-self.move, 0])
mask = np.zeros(self.patch_bgr.shape[:2], dtype=np.float64)
self._draw_convex_hull(mask,
landmark_re,
color=1)
mask = np.array([mask, mask, mask]).transpose((1, 2, 0))
mask = (cv2.GaussianBlur(mask, ksize, 0) > 0) * 1.0
patch_organs = self.get_patch(self.mask_organs)
mask = cv2.GaussianBlur(mask, ksize, 0)[:]
mask[patch_organs > 0] = (1-patch_organs[patch_organs > 0])
return mask
class Face(Organ):
'''
脸类
'''
def __init__(self, im_bgr, img_hsv, temp_bgr, temp_hsv, landmarks, index):
self.index = index
# 五官名称
self.organs_name = ['jaw', 'mouth', 'nose',
'left eye', 'right eye', 'left brow', 'right brow']
# 五官等标记点
self.organs_points = [list(range(0, 17)), list(range(48, 61)), list(range(27, 35)), list(
range(42, 48)), list(range(36, 42)), list(range(22, 27)), list(range(17, 22))]
# 实例化脸对象和五官对象
self.organs = {name: Organ(im_bgr, img_hsv, temp_bgr, temp_hsv, landmarks[points], name) for name, points in zip(
self.organs_name, self.organs_points)}
# 获得额头坐标,实例化额头
mask_nose = self.organs['nose'].get_mask_abs()
mask_organs = (self.organs['mouth'].get_mask_abs()+mask_nose+self.organs['left eye'].get_mask_abs(
)+self.organs['right eye'].get_mask_abs()+self.organs['left brow'].get_mask_abs()+self.organs['right brow'].get_mask_abs())
forehead_landmark = self.get_forehead_landmark(
im_bgr, landmarks, mask_organs, mask_nose)
self.organs['forehead'] = Forehead(
im_bgr, img_hsv, temp_bgr, temp_hsv, forehead_landmark, mask_organs, 'forehead')
mask_organs += self.organs['forehead'].get_mask_abs()
# 人脸的完整标记点
self.FACE_POINTS = np.concatenate([landmarks, forehead_landmark])
super(Face, self).__init__(im_bgr, img_hsv,
temp_bgr, temp_hsv, self.FACE_POINTS, 'face')
mask_face = self.get_mask_abs()-mask_organs
self.patch_mask = self.get_patch(mask_face)
pass
def get_forehead_landmark(self, im_bgr, face_landmark, mask_organs, mask_nose):
'''
计算额头坐标
'''
# 画椭圆
radius = (np.linalg.norm(
face_landmark[0]-face_landmark[16])/2).astype('int32')
center_abs = tuple(
((face_landmark[0]+face_landmark[16])/2).astype('int32'))
angle = np.degrees(np.arctan(
(lambda l: l[1]/l[0])(face_landmark[16]-face_landmark[0]))).astype('int32')
mask = np.zeros(mask_organs.shape[:2], dtype=np.float64)
cv2.ellipse(mask, center_abs, (radius, radius), angle, 180, 360, 1, -1)
# 剔除与五官重合部分
mask[mask_organs[:, :, 0] > 0] = 0
# 根据鼻子的肤色判断真正的额头面积
index_bool = []
for ch in range(3):
mean, std = np.mean(im_bgr[:, :, ch][mask_nose[:, :, ch] > 0]), np.std(
im_bgr[:, :, ch][mask_nose[:, :, ch] > 0])
up, down = mean+0.5*std, mean-0.5*std
index_bool.append((im_bgr[:, :, ch] < down)
| (im_bgr[:, :, ch] > up))
index_zero = (
(mask > 0) & index_bool[0] & index_bool[1] & index_bool[2])
mask[index_zero] = 0
index_abs = np.array(np.where(mask > 0)[::-1]).transpose()
landmark = cv2.convexHull(index_abs).squeeze()
return landmark
class Makeup():
'''
化妆器
'''
def __init__(self, predictor_path="./data/shape_predictor_68_face_landmarks.dat"):
self.photo_path = []
self.PREDICTOR_PATH = predictor_path
self.faces = {}
# 人脸定位、特征提取器,来自dlib
self.detector = detector
self.predictor = predictor
def get_faces(self, im_bgr, im_hsv, temp_bgr, temp_hsv, name, n=1):
'''
人脸定位和特征提取,定位到两张及以上脸或者没有人脸将抛出异常
im:
照片的numpy数组
fname:
照片名字的字符串
返回值:
人脸特征(x,y)坐标的矩阵
'''
rects = self.detector(im_bgr, 1)
if len(rects) < 1:
raise NoFace('Too many faces in '+name)
return {name: [Face(im_bgr, im_hsv, temp_bgr, temp_hsv, np.array([[p.x, p.y] for p in self.predictor(im_bgr, rect).parts()]), i) for i, rect in enumerate(rects)]}
def read_im(self, fname, scale=1):
'''
读取图片
'''
im = cv2.imdecode(np.fromfile(fname, dtype=np.uint8), -1)
im = imutils.resize(im, width=600)
if type(im) == type(None):
raise ValueError(
'Opencv error reading image "{}" , got None'.format(fname))
return im
def read_and_mark(self, fname):
im_bgr = self.read_im(fname)
im_hsv = cv2.cvtColor(im_bgr, cv2.COLOR_BGR2HSV)
temp_bgr, temp_hsv = im_bgr.copy(), im_hsv.copy()
return im_bgr, temp_bgr, self.get_faces(im_bgr, im_hsv, temp_bgr, temp_hsv, fname)