forked from ExposuresProvider/icees-api
-
Notifications
You must be signed in to change notification settings - Fork 1
/
handlers.py
556 lines (483 loc) · 14.8 KB
/
handlers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""ICEES API handlers."""
from functools import partial
import json
from typing import Dict
from fastapi import APIRouter, Body, Depends
from reasoner_converter.downgrading import downgrade_Query
from reasoner_converter.interfaces import upgrade_reasoner
from reasoner_converter.upgrading import upgrade_QueryGraph, upgrade_KnowledgeGraph, upgrade_Result
from reasoner_pydantic import Query, Message
from dependencies import get_db
from features import model, knowledgegraph
from features.identifiers import get_identifiers
from features.model import validate_range
from models import (
Features,
FeatureAssociation, FeatureAssociation2,
AllFeaturesAssociation, AllFeaturesAssociation2,
AddNameById,
)
from utils import to_qualifiers, to_qualifiers2
ROUTER = APIRouter()
@ROUTER.post("/{table}/{year}/cohort", response_model=Dict)
def discover_cohort(
table: str,
year: int,
req_features: Features = Body(..., example={}),
conn=Depends(get_db),
) -> Dict:
"""Cohort discovery."""
cohort_id, size = model.get_ids_by_feature(
conn,
table,
year,
req_features,
)
if size == -1:
return_value = (
"Input features invalid or cohort ≤10 patients. "
"Please try again."
)
else:
return_value = {
"cohort_id": cohort_id,
"size": size
}
return {"return value": return_value}
@ROUTER.get(
"/{table}/{year}/cohort/dictionary",
response_model=Dict,
)
def dictionary(
table: str,
year: int,
conn=Depends(get_db),
) -> Dict:
"""Get cohort dictionary."""
return_value = model.get_cohort_dictionary(conn, table, year)
return {"return value": return_value}
@ROUTER.put("/{table}/{year}/cohort/{cohort_id}", response_model=Dict)
def edit_cohort(
table: str,
year: int,
cohort_id: str,
req_features: Features = Body(..., example={}),
conn=Depends(get_db),
) -> Dict:
"""Cohort discovery."""
cohort_id, size = model.select_cohort(
conn,
table,
year,
req_features,
cohort_id,
)
if size == -1:
return_value = (
"Input features invalid or cohort ≤10 patients. "
"Please try again."
)
else:
return_value = {
"cohort_id": cohort_id,
"size": size
}
return {"return value": return_value}
@ROUTER.get("/{table}/{year}/cohort/{cohort_id}", response_model=Dict)
def get_cohort(
table: str,
year: int,
cohort_id: str,
conn=Depends(get_db),
) -> Dict:
"""Get definition of a cohort."""
cohort_features = model.get_cohort_by_id(
conn,
table,
year,
cohort_id,
)
if cohort_features is None:
return_value = "Input cohort_id invalid. Please try again."
else:
return_value = cohort_features
return {"return value": return_value}
with open("examples/feature_association.json") as stream:
feature_association_example = json.load(stream)
@ROUTER.post(
"/{table}/{year}/cohort/{cohort_id}/feature_association",
response_model=Dict,
)
def feature_association(
table: str,
year: int,
cohort_id: str,
obj: FeatureAssociation = Body(
...,
example=feature_association_example,
),
conn=Depends(get_db),
) -> Dict:
"""Hypothesis-driven 2 x 2 feature associations.
Users select a predefined cohort and two feature variables, and the service
returns a 2 x 2 feature table with a correspondingChi Square statistic and
P value.
"""
feature_a = to_qualifiers(obj["feature_a"])
feature_b = to_qualifiers(obj["feature_b"])
cohort_meta = model.get_features_by_id(conn, table, cohort_id)
if cohort_meta is None:
return_value = "Input cohort_id invalid. Please try again."
else:
cohort_features, cohort_year = cohort_meta
return_value = model.select_feature_matrix(
conn,
table,
year,
cohort_features,
cohort_year,
feature_a,
feature_b,
)
return {"return value": return_value}
with open("examples/feature_association2.json") as stream:
feature_association2_example = json.load(stream)
@ROUTER.post(
"/{table}/{year}/cohort/{cohort_id}/feature_association2",
response_model=Dict,
)
def feature_association2(
table: str,
year: int,
cohort_id: str,
obj: FeatureAssociation2 = Body(
...,
example=feature_association2_example,
),
conn=Depends(get_db),
) -> Dict:
"""Hypothesis-driven N x N feature associations.
Users select a predefined cohort, two feature variables, and bins, which
can be combined, and the service returns a N x N feature table with a
corresponding Chi Square statistic and P value.
"""
feature_a = to_qualifiers2(obj["feature_a"])
feature_b = to_qualifiers2(obj["feature_b"])
to_validate_range = obj.get("check_coverage_is_full", False)
if to_validate_range:
validate_range(table, feature_a)
validate_range(table, feature_b)
cohort_meta = model.get_features_by_id(conn, table, cohort_id)
if cohort_meta is None:
return_value = "Input cohort_id invalid. Please try again."
else:
cohort_features, cohort_year = cohort_meta
return_value = model.select_feature_matrix(
conn,
table,
year,
cohort_features,
cohort_year,
feature_a,
feature_b,
)
return {"return value": return_value}
with open("examples/associations_to_all_features.json") as stream:
associations_to_all_features_example = json.load(stream)
@ROUTER.post(
"/{table}/{year}/cohort/{cohort_id}/associations_to_all_features",
response_model=Dict,
)
def associations_to_all_features(
table: str,
year: int,
cohort_id: str,
obj: AllFeaturesAssociation = Body(
...,
example=associations_to_all_features_example,
),
conn=Depends(get_db),
) -> Dict:
"""Exploratory 1 X N feature associations.
Users select a predefined cohort and a feature variable of interest, and
the service returns a 1 x N feature table with corrected Chi Square
statistics and associated P values.
"""
feature = to_qualifiers(obj["feature"])
maximum_p_value = obj["maximum_p_value"]
correction = obj.get("correction")
return_value = model.select_associations_to_all_features(
conn,
table,
year,
cohort_id,
feature,
maximum_p_value,
correction=correction,
)
return {"return value": return_value}
with open("examples/associations_to_all_features2.json") as stream:
associations_to_all_features2_example = json.load(stream)
@ROUTER.post(
"/{table}/{year}/cohort/{cohort_id}/associations_to_all_features2",
response_model=Dict,
)
def associations_to_all_features2(
table: str,
year: int,
cohort_id: str,
obj: AllFeaturesAssociation2 = Body(
...,
example=associations_to_all_features2_example,
),
conn=Depends(get_db),
) -> Dict:
"""Exploratory 1 X N feature associations.
Users select a predefined cohort and a feature variable of interest and
bins, which can be combined, and the service returns a 1 x N feature table
with corrected Chi Square statistics and associated P values.
"""
feature = to_qualifiers2(obj["feature"])
to_validate_range = obj.get("check_coverage_is_full", False)
if to_validate_range:
validate_range(table, feature)
maximum_p_value = obj["maximum_p_value"]
correction = obj.get("correction")
return_value = model.select_associations_to_all_features(
conn,
table,
year,
cohort_id,
feature,
maximum_p_value,
correction=correction,
)
return {"return value": return_value}
@ROUTER.get(
"/{table}/{year}/cohort/{cohort_id}/features",
response_model=Dict,
)
def features(
table: str,
year: int,
cohort_id: str,
conn=Depends(get_db),
) -> Dict:
"""Feature-rich cohort discovery.
Users select a predefined cohort as the input parameter, and the service
returns a profile of that cohort in terms of all feature variables.
"""
cohort_meta = model.get_features_by_id(conn, table, cohort_id)
if cohort_meta is None:
return_value = "Input cohort_id invalid. Please try again."
else:
cohort_features, cohort_year = cohort_meta
return_value = model.get_cohort_features(
conn,
table,
year,
cohort_features,
cohort_year,
)
return {"return value": return_value}
@ROUTER.get(
"/{table}/{feature}/identifiers",
response_model=Dict,
)
def identifiers(
table: str,
feature: str,
) -> Dict:
"""Feature identifiers."""
return_value = {
"identifiers": get_identifiers(table, feature)
}
return {"return value": return_value}
@ROUTER.get(
"/{table}/name/{name}",
response_model=Dict,
)
def get_name(
table: str,
name: str,
conn=Depends(get_db),
) -> Dict:
"""Return cohort id associated with name."""
return_value = model.get_id_by_name(conn, table, name)
return {"return value": return_value}
@ROUTER.post(
"/{table}/name/{name}",
response_model=Dict,
)
def post_name(
table: str,
name: str,
obj: AddNameById,
conn=Depends(get_db),
) -> Dict:
"""Associate name with cohort id."""
return_value = model.add_name_by_id(
conn,
table,
name,
obj["cohort_id"],
)
return {"return value": return_value}
with open("examples/knowledge_graph.json") as stream:
knowledge_graph_example = json.load(stream)
@ROUTER.post(
"/knowledge_graph",
response_model=Dict,
)
def knowledge_graph(
obj: Query = Body(..., example=knowledge_graph_example),
reasoner: bool = False,
conn=Depends(get_db),
) -> Message:
"""Query for knowledge graph associations between concepts."""
return_value = knowledgegraph.get(conn, downgrade_Query(obj))
message = dict()
if "query_graph" in return_value:
message["query_graph"] = upgrade_QueryGraph(return_value.pop("query_graph"))
if "knowledge_graph" in return_value:
message["knowledge_graph"] = upgrade_KnowledgeGraph(return_value.pop("knowledge_graph"))
if "results" in return_value:
message["results"] = [
upgrade_Result(result)
for result in return_value.pop("results")
]
return_value = {
"message": message,
**return_value,
}
if reasoner:
return return_value
return {"return value": return_value}
@ROUTER.get(
"/knowledge_graph/schema",
response_model=Dict,
)
def knowledge_graph_schema(
reasoner: bool = False,
) -> Dict:
"""Query the ICEES clinical reasoner for knowledge graph schema."""
return_value = knowledgegraph.get_schema()
if reasoner:
return return_value
return {"return value": return_value}
@ROUTER.get(
"/predicates",
tags=["reasoner"],
)
def predicates():
"""Get meta-knowledge graph."""
categories = [
"biolink:ActivityAndBehavior",
"biolink:ChemicalSubstance",
"biolink:Disease",
"biolink:Drug",
"biolink:Environment",
"biolink:NamedThing",
"biolink:PhenotypicFeature",
]
return {
sub: {
obj: ["biolink:correlated_with"]
for obj in categories
}
for sub in categories
}
with open("examples/knowledge_graph_overlay.json") as stream:
kg_overlay_example = json.load(stream)
@ROUTER.post(
"/knowledge_graph_overlay",
response_model=Dict,
)
def knowledge_graph_overlay(
obj: Query = Body(..., example=kg_overlay_example),
reasoner: bool = False,
conn=Depends(get_db),
) -> Message:
"""Query for knowledge graph co-occurrence overlay."""
return_value = knowledgegraph.co_occurrence_overlay(conn, downgrade_Query(obj))
message = dict()
if "query_graph" in return_value:
message["query_graph"] = upgrade_QueryGraph(return_value.pop("query_graph"))
if "knowledge_graph" in return_value:
message["knowledge_graph"] = upgrade_KnowledgeGraph(return_value.pop("knowledge_graph"))
if "results" in return_value:
message["results"] = [
upgrade_Result(result)
for result in return_value.pop("results")
]
return_value = {
"message": message,
**return_value,
}
if reasoner:
return return_value
return {"return value": return_value}
with open("examples/knowledge_graph_one_hop.json") as stream:
kg_onehop_example = json.load(stream)
def knowledge_graph_one_hop(
obj: Query = Body(..., example=kg_onehop_example),
reasoner: bool = True,
conn=Depends(get_db),
) -> Message:
"""Query the ICEES clinical reasoner for knowledge graph one hop."""
return_value = knowledgegraph.one_hop(conn, downgrade_Query(obj))
message = dict()
if "query_graph" in return_value:
message["query_graph"] = upgrade_QueryGraph(return_value.pop("query_graph"))
if "knowledge_graph" in return_value:
message["knowledge_graph"] = upgrade_KnowledgeGraph(return_value.pop("knowledge_graph"))
if "results" in return_value:
message["results"] = [
upgrade_Result(result)
for result in return_value.pop("results")
]
return_value = {
"message": message,
**return_value,
}
if reasoner:
return return_value
return {"return value": return_value}
ROUTER.post(
"/knowledge_graph_one_hop",
response_model=Dict,
deprecated=True,
)(knowledge_graph_one_hop)
ROUTER.post(
"/query",
response_model=Dict,
tags=["reasoner"],
)(knowledge_graph_one_hop)
@ROUTER.get(
"/bins",
response_model=Dict,
)
def handle_bins(
year: str = None,
table: str = None,
feature: str = None,
) -> Dict:
"""Return bin values."""
with open("config/bins.json", "r") as stream:
bins = json.load(stream)
if feature is not None:
bins = {
year_key: {
table_key: table_value.get(feature, None)
for table_key, table_value in year_value.items()
}
for year_key, year_value in bins.items()
}
if table is not None:
bins = {
year_key: year_value.get(table, None)
for year_key, year_value in bins.items()
}
if year is not None:
bins = bins.get(year, None)
return {"return_value": bins}