-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdata_process.py
67 lines (50 loc) · 1.61 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import pickle
import json
import random
import tensorflow
import numpy
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
def data_process(intent, philosopher_name):
with open(intent) as file:
data = json.load(file)
# try:
# with open(philosopher_name + "_data.pickle", "rb") as f:
# words, labels, training, output = pickle.load(f)
# except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open(philosopher_name + "_data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
return [words, labels, training, output, data]