forked from aisu-wata0/MatrixSolving
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainbak.cpp
173 lines (150 loc) · 2.85 KB
/
mainbak.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
typedef double **Matrix;
typedef double *Row;
typedef double *Col;
typedef double Elem;
Matrix allocate_matrix(int n);
Col allocate_col(int n);
Row allocate_row(int n);
void free_matrix(Matrix M, int n);
void pivot_partial(Matrix A, Col S,Col B, int n);
void forward_elimination(Matrix A,Col B,int n);
Col back_substitution(Matrix A, Col B, int n);
Col scale_factor(Matrix A,int n);
void gauss(Matrix A, Col B, int n);
void swap_rows(Row *r1, Row*r2);
void print_matrix(Matrix M, int n, char * name);
void print_col(Col C, int n, char *name);
void print_row(Row R, int n, char *name);
int main(int argc, char *argv[])
{
FILE *ifp;
int n,i,j;
Matrix A;
Col B;
if(argc < 2)
{
printf("\nInput filename not passed \n");
exit(1);
}
ifp = fopen(argv[1],"r");
if(ifp == NULL)
{
printf("\nCould not open file %s\n",argv[1]);
exit(1);
}
fscanf(ifp,"%i",&n);
printf("A * X = B\n");
printf("\nDimension(A) = %i\n",n);
A = allocate_matrix(n);
for( i = 1; i <= n; ++i)
for(j = 1; j <= n; ++j)
fscanf(ifp,"%lf", &A[i][j]);
B = allocate_col(n);
for(j = 1; j <= n; ++j)
fscanf(ifp,"%lf",&B[j]);
fclose(ifp);
print_matrix(A,n,"A");
print_col(B,n,"B");
gauss(A,B,n);
getchar();
return 0;
}
Col scale_factor(Matrix A, int n)
{
int i,j;
Col S ;
S = allocate_col(n);
for(i = 1; i <= n; ++i){
S[i] = A[i][1];
for(j = 2; j <= n; ++j){
if(S[i] < fabs(A[i][j]))
S[i] = fabs(A[i][j]);
}
}
return S;
}
void pivot_partial(Matrix A, Col S,Col B, int n)
{
int i,j;
Elem temp;
for(j = 1; j <= n; ++j){
for(i = j + 1; i <= n; ++i){
if(S[i] == 0){
if(B[i] == 0)
printf("\nSystem doesnt have a unique solution");
else
printf("\nSystem is inconsistent");
exit(1);
}
if(fabs(A[i][j]/S[i])>fabs(A[j][j]/S[j])){
swap_rows(&A[i],&A[j]);
temp = B[i];
B[i] = B[j];
B[j] = temp;
}
}
if(A[j][j] == 0){
printf("\nSingular System Detected\n");
exit(1);
}
}
}
void swap_rows(Row *r1, Row*r2)
{
Row temp;
temp = *r1;
*r1 = *r2;
*r2 = temp;
}
void forward_elimination(Matrix A,Col B,int n)
{
int i,j,k;
double m;
for(k = 1; k <= n-1; ++k)
{
for(i = k + 1; i <= n; ++i)
{
m = A[i][k] / A[k][k];
for(j = k + 1; j <= n; ++j)
{
A[i][j] -= m * A[k][j];
if(i == j && A[i][j] == 0)
{
printf("\nSingular system detected");
exit(1);
}
}
B[i] -= m * B[k];
}
}
}
Col back_substitution(Matrix A, Col B, int n)
{
int i,j;
Elem sum;
Col X = allocate_col(n);
X[n] = B[n]/A[n][n];
for(i = n - 1; i >= 1; --i)
{
sum = 0;
for(j = i + 1; j <= n; ++j)
sum += A[i][j] * X[j];
X[i] = (B[i] - sum) / A[i][i];
}
return X;
}
void gauss(Matrix A, Col B, int n)
{
int i,j;
Col S, X;
S = scale_factor(A,n);
pivot_partial(A,S,B,n);
forward_elimination(A,B,n);
X = back_substitution(A,B,n);
print_col(X,n,"X");
free(S + 1);
free(X + 1);
}