Model(
(network): Network(
(Conv2d_1): Conv2d(1, 10, kernel_size=(3, 3), stride=(1, 1))
(Relu_1): ReLU()
(AvgPool_1): AvgPool2d(kernel_size=2, stride=2, padding=0)
(Linear_1): Linear(in_features=1690, out_features=100, bias=True)
(Dropout_1): Dropout(p=0.1, inplace=False)
(Elu_1): ELU(alpha=1.0)
(Linear_2): Linear(in_features=100, out_features=50, bias=True)
(Dropout_2): Dropout(p=0.1, inplace=False)
(Tanh_1): Tanh()
(Linear_3): Linear(in_features=50, out_features=10, bias=True)
(Dropout_3): Dropout(p=0.1, inplace=False)
(LogSoftMax_1): LogSoftmax(dim=None)
)
)
参数 |
范围 |
意义 |
type_pool |
0, 1 |
0:MaxPool 1:AvgPool |
type_active |
0,1,2 |
0:Relu 1:Elu 2:Tanh |
out_channels |
[5, 16] |
通道数 |
kernel_size |
3, 5 |
卷积核的大小 |
padding |
0, 1, 2 |
Padding尺寸 |
linear_layer_out_1 |
[100, 200] |
线性层1的output_size |
drop_out_1 |
[0., 0.6] |
线性层1的dropout |
active_type_1 |
0,1,2 |
0:Relu 1:Elu 2:Tanh |
linear_layer_out_2 |
[20, 50] |
线性层2的output_size |
drop_out_2 |
[0., 0.6] |
线性层2的dropout |
active_type_2 |
0,1,2 |
0:Relu 1:Elu 2:Tanh |
linear_layer_out_3 |
10 |
线性层3的output_size |
drop_out_3 |
[0., 0.6] |
线性层3的dropout |
last_layer_type |
0,1,2,3 |
0:Sigmoid 1:LogSigmoid 2:SoftMax 3:LogSoftMax |
optim_type |
0,1 |
0:SGD 1:Adam |
lr |
[10e-3, 10e-1] |
学习率 |