-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathEmbed.py
41 lines (37 loc) · 1.31 KB
/
Embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import torch.nn as nn
import math
from torch.autograd import Variable
class Embedder(nn.Module):
def __init__(self, vocab_size, d_model):
super().__init__()
self.d_model = d_model
self.embed = nn.Embedding(vocab_size, d_model)
def forward(self, x):
return self.embed(x)
class PositionalEncoder(nn.Module):
def __init__(self, d_model, max_seq_len = 200, dropout = 0.1):
super().__init__()
self.d_model = d_model
self.dropout = nn.Dropout(dropout)
# create constant 'pe' matrix with values dependant on
# pos and i
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model, 2):
pe[pos, i] = \
math.sin(pos / (10000 ** ((2 * i)/d_model)))
pe[pos, i + 1] = \
math.cos(pos / (10000 ** ((2 * (i + 1))/d_model)))
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
# make embeddings relatively larger
x = x * math.sqrt(self.d_model)
#add constant to embedding
seq_len = x.size(1)
pe = Variable(self.pe[:,:seq_len], requires_grad=False)
if x.is_cuda:
pe.cuda()
x = x + pe
return self.dropout(x)