-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathelliptic-curve-field-p-chart.py
60 lines (43 loc) · 2.14 KB
/
elliptic-curve-field-p-chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
import matplotlib.pyplot as plt
parameters = {'x_min':0, 'x_max':97, 'skip':2, 'module':43.5, 'curve':'x**3 + 7','positive_dot_color':'black', 'negative_dot_color':'red'}
#x_min: Determines the minimum value of x. It always need to be over 0
#x_max: Determines the maximum value of x.
#skip: Determines the number of points in the chart. For example, with the value 2, the number of values is halved.
#With 3, the number of points is iqual to the third part of the total.
#curve: Determines the type of elliptic curve. One extra example is 'x**3 - x + 1' . Always use spaces between characters.
#positive_dot_color: Determines the color of the points that correspond to the positive part of the ellipic curve.
#negative_dot_color: Determines the color of the points that correspond to the negative part of the ellipic curve.
def elliptic_curve_p(lr, ur, sk, md, crv):
#Creates the first four lists of numbers that belong to the coordinates of the curve
x1 = []
y1 = []
x2 = []
y2 = []
for i in range(lr,ur,sk):
y1.append(curva_pos(i, crv))
x1.append(i)
y2.append(curva_neg(i, crv))
x2.append(i)
x1_mod = mod_valores(x1, md)
y1_mod = mod_valores(y1, md)
x2_mod = mod_valores(x2, md)
y2_mod = mod_valores(y2, md)
plt.plot(x1_mod, y1_mod, marker='o', linestyle='None', color=parameters['positive_dot_color'], markersize=3, label='Positive Part of the Curve')
plt.plot(x2_mod, y2_mod, marker='o', linestyle='None', color=parameters['negative_dot_color'], markersize=3, label='Negative Part of the Curve')
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.18), ncol=2)
plt.title(f'Elliptic Curve "{str(crv)}" over Field P = {md}')
plt.axhline(y=(md/2), color='black', linestyle='--', linewidth=0.5)
plt.show()
def curva_pos(x, curve):
y = np.sqrt(eval(curve))
return y
def curva_neg(x, curve):
y_neg = -np.sqrt(eval(curve))
return y_neg
def mod_valores(list1, mod):
new_list = []
for i in range(len(list1)):
new_list.append(list1[i] % mod)
return new_list
elliptic_curve_p(parameters['x_min'], parameters['x_max'], parameters['skip'], parameters['module'], parameters['curve'])