-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathisl_factorization.c
331 lines (287 loc) · 7.96 KB
/
isl_factorization.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
* Copyright 2005-2007 Universiteit Leiden
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
* Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
* and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
* B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
*/
#include <isl_map_private.h>
#include <isl_factorization.h>
#include <isl_space_private.h>
#include <isl_mat_private.h>
static __isl_give isl_factorizer *isl_factorizer_alloc(
__isl_take isl_morph *morph, int n_group)
{
isl_factorizer *f = NULL;
int *len = NULL;
if (!morph)
return NULL;
if (n_group > 0) {
len = isl_alloc_array(morph->dom->ctx, int, n_group);
if (!len)
goto error;
}
f = isl_alloc_type(morph->dom->ctx, struct isl_factorizer);
if (!f)
goto error;
f->morph = morph;
f->n_group = n_group;
f->len = len;
return f;
error:
free(len);
isl_morph_free(morph);
return NULL;
}
void isl_factorizer_free(__isl_take isl_factorizer *f)
{
if (!f)
return;
isl_morph_free(f->morph);
free(f->len);
free(f);
}
void isl_factorizer_dump(__isl_take isl_factorizer *f)
{
int i;
if (!f)
return;
isl_morph_print_internal(f->morph, stderr);
fprintf(stderr, "[");
for (i = 0; i < f->n_group; ++i) {
if (i)
fprintf(stderr, ", ");
fprintf(stderr, "%d", f->len[i]);
}
fprintf(stderr, "]\n");
}
__isl_give isl_factorizer *isl_factorizer_identity(__isl_keep isl_basic_set *bset)
{
return isl_factorizer_alloc(isl_morph_identity(bset), 0);
}
__isl_give isl_factorizer *isl_factorizer_groups(__isl_keep isl_basic_set *bset,
__isl_take isl_mat *Q, __isl_take isl_mat *U, int n, int *len)
{
int i;
unsigned nvar;
unsigned ovar;
isl_space *dim;
isl_basic_set *dom;
isl_basic_set *ran;
isl_morph *morph;
isl_factorizer *f;
isl_mat *id;
if (!bset || !Q || !U)
goto error;
ovar = 1 + isl_space_offset(bset->dim, isl_dim_set);
id = isl_mat_identity(bset->ctx, ovar);
Q = isl_mat_diagonal(isl_mat_copy(id), Q);
U = isl_mat_diagonal(id, U);
nvar = isl_basic_set_dim(bset, isl_dim_set);
dim = isl_basic_set_get_space(bset);
dom = isl_basic_set_universe(isl_space_copy(dim));
dim = isl_space_drop_dims(dim, isl_dim_set, 0, nvar);
dim = isl_space_add_dims(dim, isl_dim_set, nvar);
ran = isl_basic_set_universe(dim);
morph = isl_morph_alloc(dom, ran, Q, U);
f = isl_factorizer_alloc(morph, n);
if (!f)
return NULL;
for (i = 0; i < n; ++i)
f->len[i] = len[i];
return f;
error:
isl_mat_free(Q);
isl_mat_free(U);
return NULL;
}
struct isl_factor_groups {
int *pos; /* for each column: row position of pivot */
int *group; /* group to which a column belongs */
int *cnt; /* number of columns in the group */
int *rowgroup; /* group to which a constraint belongs */
};
/* Initialize isl_factor_groups structure: find pivot row positions,
* each column initially belongs to its own group and the groups
* of the constraints are still unknown.
*/
static int init_groups(struct isl_factor_groups *g, __isl_keep isl_mat *H)
{
int i, j;
if (!H)
return -1;
g->pos = isl_alloc_array(H->ctx, int, H->n_col);
g->group = isl_alloc_array(H->ctx, int, H->n_col);
g->cnt = isl_alloc_array(H->ctx, int, H->n_col);
g->rowgroup = isl_alloc_array(H->ctx, int, H->n_row);
if (!g->pos || !g->group || !g->cnt || !g->rowgroup)
return -1;
for (i = 0; i < H->n_row; ++i)
g->rowgroup[i] = -1;
for (i = 0, j = 0; i < H->n_col; ++i) {
for ( ; j < H->n_row; ++j)
if (!isl_int_is_zero(H->row[j][i]))
break;
g->pos[i] = j;
}
for (i = 0; i < H->n_col; ++i) {
g->group[i] = i;
g->cnt[i] = 1;
}
return 0;
}
/* Update group[k] to the group column k belongs to.
* When merging two groups, only the group of the current
* group leader is changed. Here we change the group of
* the other members to also point to the group that the
* old group leader now points to.
*/
static void update_group(struct isl_factor_groups *g, int k)
{
int p = g->group[k];
while (g->cnt[p] == 0)
p = g->group[p];
g->group[k] = p;
}
/* Merge group i with all groups of the subsequent columns
* with non-zero coefficients in row j of H.
* (The previous columns are all zero; otherwise we would have handled
* the row before.)
*/
static int update_group_i_with_row_j(struct isl_factor_groups *g, int i, int j,
__isl_keep isl_mat *H)
{
int k;
g->rowgroup[j] = g->group[i];
for (k = i + 1; k < H->n_col && j >= g->pos[k]; ++k) {
update_group(g, k);
update_group(g, i);
if (g->group[k] != g->group[i] &&
!isl_int_is_zero(H->row[j][k])) {
isl_assert(H->ctx, g->cnt[g->group[k]] != 0, return -1);
isl_assert(H->ctx, g->cnt[g->group[i]] != 0, return -1);
if (g->group[i] < g->group[k]) {
g->cnt[g->group[i]] += g->cnt[g->group[k]];
g->cnt[g->group[k]] = 0;
g->group[g->group[k]] = g->group[i];
} else {
g->cnt[g->group[k]] += g->cnt[g->group[i]];
g->cnt[g->group[i]] = 0;
g->group[g->group[i]] = g->group[k];
}
}
}
return 0;
}
/* Update the group information based on the constraint matrix.
*/
static int update_groups(struct isl_factor_groups *g, __isl_keep isl_mat *H)
{
int i, j;
for (i = 0; i < H->n_col && g->cnt[0] < H->n_col; ++i) {
if (g->pos[i] == H->n_row)
continue; /* A line direction */
if (g->rowgroup[g->pos[i]] == -1)
g->rowgroup[g->pos[i]] = i;
for (j = g->pos[i] + 1; j < H->n_row; ++j) {
if (isl_int_is_zero(H->row[j][i]))
continue;
if (g->rowgroup[j] != -1)
continue;
if (update_group_i_with_row_j(g, i, j, H) < 0)
return -1;
}
}
for (i = 1; i < H->n_col; ++i)
update_group(g, i);
return 0;
}
static void clear_groups(struct isl_factor_groups *g)
{
if (!g)
return;
free(g->pos);
free(g->group);
free(g->cnt);
free(g->rowgroup);
}
/* Determine if the set variables of the basic set can be factorized and
* return the results in an isl_factorizer.
*
* The algorithm works by first computing the Hermite normal form
* and then grouping columns linked by one or more constraints together,
* where a constraints "links" two or more columns if the constraint
* has nonzero coefficients in the columns.
*/
__isl_give isl_factorizer *isl_basic_set_factorizer(
__isl_keep isl_basic_set *bset)
{
int i, j, n, done;
isl_mat *H, *U, *Q;
unsigned nvar;
struct isl_factor_groups g = { 0 };
isl_factorizer *f;
if (!bset)
return NULL;
isl_assert(bset->ctx, isl_basic_set_dim(bset, isl_dim_div) == 0,
return NULL);
nvar = isl_basic_set_dim(bset, isl_dim_set);
if (nvar <= 1)
return isl_factorizer_identity(bset);
H = isl_mat_alloc(bset->ctx, bset->n_eq + bset->n_ineq, nvar);
if (!H)
return NULL;
isl_mat_sub_copy(bset->ctx, H->row, bset->eq, bset->n_eq,
0, 1 + isl_space_offset(bset->dim, isl_dim_set), nvar);
isl_mat_sub_copy(bset->ctx, H->row + bset->n_eq, bset->ineq, bset->n_ineq,
0, 1 + isl_space_offset(bset->dim, isl_dim_set), nvar);
H = isl_mat_left_hermite(H, 0, &U, &Q);
if (init_groups(&g, H) < 0)
goto error;
if (update_groups(&g, H) < 0)
goto error;
if (g.cnt[0] == nvar) {
isl_mat_free(H);
isl_mat_free(U);
isl_mat_free(Q);
clear_groups(&g);
return isl_factorizer_identity(bset);
}
done = 0;
n = 0;
while (done != nvar) {
int group = g.group[done];
for (i = 1; i < g.cnt[group]; ++i) {
if (g.group[done + i] == group)
continue;
for (j = done + g.cnt[group]; j < nvar; ++j)
if (g.group[j] == group)
break;
if (j == nvar)
isl_die(bset->ctx, isl_error_internal,
"internal error", goto error);
g.group[j] = g.group[done + i];
Q = isl_mat_swap_rows(Q, done + i, j);
U = isl_mat_swap_cols(U, done + i, j);
}
done += g.cnt[group];
g.pos[n++] = g.cnt[group];
}
f = isl_factorizer_groups(bset, Q, U, n, g.pos);
isl_mat_free(H);
clear_groups(&g);
return f;
error:
isl_mat_free(H);
isl_mat_free(U);
isl_mat_free(Q);
clear_groups(&g);
return NULL;
}