-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
200 lines (160 loc) · 7.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from __future__ import print_function
import argparse
import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
import time
import os
import uuid
from tensorboardX import SummaryWriter
from itertools import chain
parser = argparse.ArgumentParser(description='VAE MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 20)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--log-folder', type=str, default='./tensorboard',
help='tensorboard root folder')
parser.add_argument('--kl-scale', type=float, default=1,
help='kl penalty strength')
parser.add_argument('--no-aiqn', action='store_true', default=False,
help='enables random normal instead of AIQN')
parser.add_argument('--conditioned', action='store_true', default=False,
help='AIQN conditioning')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
timestr = time.strftime("%Y%m%d-%H%M%S")
summary_name = f"VAE_{timestr}_{uuid.uuid4()}"
summary_path = os.path.join(args.log_folder, summary_name)
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
return reparameterize(mu, logvar) if self.training else mu
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
class QNet(nn.Module):
def __init__(self):
super().__init__()
self.tau_fc = nn.Linear(20, 256)
self.classes_fc = nn.Linear(10, 256)
self.q_net = nn.Sequential(
nn.ReLU(True),
nn.Linear(256, 256),
nn.ReLU(True),
nn.Linear(256, 20),
)
def forward(self, tau, classes):
net_input = self.tau_fc(tau * 2 - 1)
if args.conditioned:
with torch.no_grad():
onehot = torch.zeros((classes.shape[0], 10), device=device)
onehot.scatter_(dim=-1, index=classes.view(classes.shape[0], 1), value=1)
onehot -= 1 / 10
net_input += self.classes_fc(onehot)
return self.q_net(net_input)
def reparameterize(mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
model = VAE().to(device)
q_net = QNet().to(device)
optimizer = optim.Adam(chain(model.parameters(), q_net.parameters()), lr=1e-3, weight_decay=1e-3)
# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
# https://arxiv.org/abs/1312.6114
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + args.kl_scale * KLD
def l1_quantile_loss(output, target, tau, reduce=True):
u = target - output
loss = (tau - (u.detach() <= 0).float()).mul_(u)
return loss.mean() if reduce else loss
def huber_quantile_loss(output, target, tau, k=0.02, reduce=True):
u = target - output
loss = (tau - (u.detach() <= 0).float()).mul_(u.detach().abs().clamp(max=k).div_(k)).mul_(u)
return loss.mean() if reduce else loss
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, classes) in enumerate(train_loader):
data, classes = data.to(device), classes.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
vae_loss = loss_function(recon_batch, data, mu, logvar)
tau = torch.rand(mu.shape[0], 20, device=device)
Q = q_net(tau, classes)
q_loss = huber_quantile_loss(Q, mu.detach(), tau)
loss = q_loss + vae_loss
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
def test(epoch):
model.eval()
test_loss = 0
with torch.no_grad():
for i, (data, _) in enumerate(test_loader):
data = data.to(device)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).item()
if i == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
logger.add_image('reconstruction', comparison.view(-1, 1, 28, 28), epoch)
test_loss /= len(test_loader.dataset)
logger.add_scalar('test_loss', test_loss, epoch)
fixed_rand = torch.rand(80 if args.conditioned else 64, 20, device=device)
fixed_randn = torch.randn(80 if args.conditioned else 64, 20, device=device)
fixed_classes = torch.arange(10, device=device, dtype=torch.long)
fixed_classes = fixed_classes.expand(8, 10).transpose(0, 1).reshape(-1)
with SummaryWriter(summary_path) as logger:
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
with torch.no_grad():
z = fixed_randn if args.no_aiqn else q_net(fixed_rand, fixed_classes)
sample = model.decode(z).cpu()
logger.add_image('sample', sample.view(-1, 1, 28, 28), epoch)