-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_inference.py
329 lines (264 loc) · 13.7 KB
/
main_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
__author__ = "Steve Ataucuri"
__copyright__ = "Sprace.org.br"
__version__ = "1.0.0"
import sys
import os
import argparse
import json
import datetime as dt
from core.data.data_loader import *
from core.models.lstm import ModelLSTM, ModelLSTMParallel, GaussianLSTM
from core.models.cnn import ModelCNN, ModelCNNParallel
from core.models.mlp import ModelMLP, GaussianMLP
from core.models.rnn import ModelRNN
from core.models.base import BagOfHits
from core.utils.metrics import *
from core.utils.utils import *
import numpy as np
def parse_args():
"""Parse arguments."""
# Parameters settings
parser = argparse.ArgumentParser(description="LSTM implementation ")
# Dataset setting
parser.add_argument('--config', type=str, default="default_config.json", help='Configuration file')
parser.add_argument('--dataset', type=str, help='Path to dataset')
parser.add_argument('--cylindrical', type=str, help='Type of Coordenates system')
parser.add_argument('--load', type=str, help='this param load model')
parser.add_argument('--normalise', type=str, help='normalise input data')
parser.add_argument('--typeopt', type=str, help='type of optimization of predicted value')
# parse the arguments
args = parser.parse_args()
return args
def manage_models(config):
type_model = config['model']['name']
model = None
if type_model == 'lstm': #simple LSTM
model = ModelLSTM(config)
elif type_model == 'gaussian-lstm':
model = GaussianLSTM(config)
elif type_model == 'lstm-parallel':
model = ModelLSTMParallel(config)
elif type_model == 'cnn':
model = ModelCNN(config)
elif type_model == 'cnn-parallel':
model = ModelCNNParallel(config)
elif type_model == 'mlp':
model = ModelMLP(config)
elif type_model == 'gaussian-mlp':
model = GaussianMLP(config)
elif type_model == 'simple-rnn':
model = ModelRNN(config)
return model
def main():
args = parse_args()
# load configurations of model and others
configs = json.load(open(args.config, 'r'))
# create defaults dirs
output_path = configs['paths']['save_dir']
output_logs = configs['paths']['log_dir']
data_file = configs['data']['filename']
time_steps = configs['model']['layers'][0]['input_timesteps'] # the number of points or hits
t_features = configs['model']['layers'][0]['input_features'] # the number of features of a tensor
n_features = configs['data']['features'] # the number of features of data input
optim = configs['model']['optimizer']
type_model = configs['model']['name']
is_parallel = configs['model']['isparallel']
split = configs['data']['train_split'] # the number of features of each hits
cylindrical = configs['data']['cylindrical'] # set to polar or cartesian coordenates
normalise = configs['data']['normalise']
num_hits = configs['data']['num_hits']
type_norm = configs['data']['type_norm']
points_3d = configs['data']['points_3d'] # what kind of points: (rho, eta, phi) or (eta, phi)
type_opt = configs['testing']['type_optimization']
tolerance = configs['testing']['tolerance']
metric = configs['testing']['metric']
loadModel = configs['training']['load_model']
# we set preference to params by bash commands
if args.dataset is not None:
data_file = args.dataset
configs['data']['filename'] = data_file
if args.cylindrical is not None:
cylindrical = True if args.cylindrical == "True" else False
configs['data']['cylindrical'] = cylindrical
if args.load is not None:
loadModel = True if args.load == "True" else False
configs['training']['load_model'] = loadModel
if args.normalise is not None:
normalise = True if args.normalise == "True" else False
configs['data']['normalise'] = normalise
if args.typeopt is not None:
type_opt = args.typeopt
configs['testing']['type_optimization'] = type_opt
#create a encryp name for dataset
path_to, filename = os.path.split(data_file)
orig_ds_name = filename
encryp_ds_name = get_unique_name(orig_ds_name)
decryp_ds_name = get_decryp_name(encryp_ds_name)
output_encry = os.path.join(output_path, encryp_ds_name)
if os.path.isdir(output_path) == False:
os.mkdir(output_path)
if os.path.isdir(output_encry) == False:
os.mkdir(output_encry)
if os.path.isdir(output_logs) == False:
os.mkdir(output_logs)
model = manage_models(configs)
if model is None:
print('Please instance model')
return
if loadModel:
if not model.load_model():
print('[Error] please change the config file : load_model')
return
elif not loadModel:
print('[Error] this scripts don´t allow train models. Change the load_model parameter to true.')
return
if type_norm == "zscore":
kind_norm = KindNormalization.Zscore
elif type_norm == "maxmin":
kind_norm = KindNormalization.Scaling
else:
print('error type normalization')
# prepare data set
data = Dataset(data_file, split, cylindrical, num_hits, kind_norm, points_3d=points_3d)
# we need to load a previous distribution of training data. If we have testing stage divided
# pay attention x_scaler and y_scaler have the same distribution normalized of training stage
print('[Data] Loading distribution from ', output_encry)
x_scaler, y_scaler = data.load_scale_param(output_encry)
X_test, y_test = data.get_testing_data(n_hit_in=time_steps, n_hit_out=1,
n_features=n_features, normalise=False,
xscaler=x_scaler, yscaler=y_scaler)
# a short dataset
#X_test = X_test.iloc[0:1000,]
#y_test = y_test[0:1000]
print('[Data] Data shape X_test.shape:', X_test.shape)
print('[Data] Data shape y_test.shape:', y_test.shape)
if type_model == 'mlp' or type_model == 'gaussian-mlp':
X_test_, y_test_ = X_test, y_test
if type_model == 'lstm' or type_model == 'cnn' or type_model == 'gaussian-lstm':
if not is_parallel:
# convertimos a matriz do test em um vetor
X_test_ = data.reshape3d(X_test, time_steps, n_features)
y_test_ = data.reshape3d(y_test, 6, n_features)
elif type_model == 'lstm-parallel' or type_model == 'cnn-parallel':
X_test_ = data.reshape3d(X_test, time_steps, n_features)
y_test_ = y_test
print('[Data] Predicting dataset with input ...', X_test_.shape)
seq_len = num_hits - time_steps
#pred_full_res = model.predict_full_sequences_nearest(X_test_, y_test_, seq_len)
#pred_full_res, correct = model.predict_full_sequences_nearest(X_test_, y_test, seq_len)
correct = [0]
correct_nearest = [0]
y_pred = None
if cylindrical:
if type_opt == "normal":
y_pred = model.predict_full_sequences(X_test_, data, num_hits=6, normalise=normalise)
elif type_opt == "nearest":
# get data in coord cartesian
data_tmp = Dataset(data_file, split, False, num_hits, kind_norm, points_3d=points_3d)
# for cylindrical True always we need the data as original values with normalise False
X_test_aux, y_test_aux = data_tmp.get_testing_data(n_hit_in=time_steps, n_hit_out=1,
n_features=n_features, normalise=False)
if not is_parallel:
y_pred, correct_nearest, correct = model.predict_full_sequences_nearest(X_test_, y_test, data, BagOfHits.Layer, y_test_aux, seq_len,
normalise=normalise, cylindrical=True, num_features=n_features, num_obs=time_steps,
verbose=False, tol=tolerance)
else:
y_pred, correct_nearest, correct = model.predict_full_sequences_nearest_parallel(X_test_, y_test, data, BagOfHits.Layer, y_test_aux,
t_steps=time_steps, t_features=t_features, n_features=n_features, num_hits=seq_len,
normalise=normalise, cylindrical=True, verbose=False, tol=tolerance, metric=metric)
else:
if type_opt == "normal":
y_pred = model.predict_full_sequences(X_test_, data, num_hits=6, normalise=normalise)
elif type_opt == "nearest":
if not is_parallel:
y_pred, correct_nearest, correct = model.predict_full_sequences_nearest(X_test_, y_test, data, BagOfHits.Layer, None, seq_len,
normalise=normalise, cylindrical=False, num_features=n_features,
verbose=False, tol=tolerance)
else:
y_pred, correct_nearest, correct = model.predict_full_sequences_nearest_parallel(X_test_, y_test, data, BagOfHits.Layer, None,
t_steps=time_steps, t_features=t_features, n_features=n_features, num_hits=seq_len,
normalise=normalise, cylindrical=False, verbose=False, tol=tolerance, metric=metric)
else:
print('no algorithm defined to predict')
y_predicted = convert_vector_to_matrix(y_pred, n_features, seq_len)
y_predicted = to_frame(y_predicted)
print('[Data] shape y_test ', y_test.shape)
print('[Data] shape y_predicted ', y_predicted.shape)
# we need to transform to original data
# no more supported
'''
if normalise:
y_test_orig = data.inverse_transform_test_y(y_test)
y_predicted_orig = data.inverse_transform_test_y(predicted_nearest)
else:
y_test_orig = y_test
y_predicted_orig = predicted_nearest
'''
if cylindrical:
coord = 'cylin'
else:
coord = 'xyz'
ident_name = model.name + "_" + coord
# save correct hits
correct_new = list(correct_nearest)
correct_new.append(tolerance)
save_numpy_values(correct_new, output_encry, 'correct_%s.npy' % ident_name)
# save results in a file
orig_stdout = sys.stdout
f = open(os.path.join(output_encry, 'results-test.txt'), 'a')
sys.stdout = f
now = dt.datetime.now()
total_tracks = len(X_test)
print("[Output] Results ")
print("---Parameters--- ")
print("\t Model Name : ", model.name)
print("\t Dataset : ", model.orig_ds_name)
print("\t Tracks : ", total_tracks)
print("\t Model saved : ", model.save_fnameh5)
print("\t Test date : ", now.strftime("%d/%m/%Y %H:%M:%S"))
print("\t Coordenates : ", coord)
print("\t Model Scaled : ", model.normalise)
print("\t Model Optimizer : ", optim)
print("\t Prediction Opt : ", type_opt)
print("\t Distance metric : ", metric)
print("\t Correct hits per layer Nearest %s of %s tracks tolerance=%s: " % (correct_nearest, total_tracks, tolerance))
print("\t Porcentage correct hits :", [str(round((t*100)/total_tracks, 2)) +"%" for t in correct_nearest])
print("\t Correct hits per layer with Normal %s of %s tracks tolerance=%s: " % (correct, total_tracks, tolerance))
print("\t Porcentage correct hits :", [str(round((t*100)/total_tracks, 2)) +"%" for t in correct])
# calculate the number of reconstructed tracks
true_tracks = np.concatenate([X_test, y_test], axis = 1)
pred_tracks = np.concatenate([X_test, y_predicted], axis = 1)
true_tracks = pd.DataFrame(true_tracks)
pred_tracks = pd.DataFrame(pred_tracks)
tracks = pd.concat([true_tracks, pred_tracks])
tracks_ = tracks[tracks.duplicated(keep='first')]
print('\t Reconstructed tracks: %s of %s tracks (%s)' % (tracks_.shape[0], total_tracks, (tracks_.shape[0]*100)/total_tracks))
# metrics for nearest
_,_,_,_,result = calc_score(data.reshape2d(y_test, 1),
data.reshape2d(y_predicted, 1), report=True)
print(result)
calc_score_layer(y_test, y_predicted, n_features=3)
mses, rmses, r2s = calc_score_layer_axes(y_test, y_predicted)
summarize_scores_axes(mses, rmses, r2s)
sys.stdout = orig_stdout
f.close()
# call this function againt with normalise False
#x_true, y_true = data.get_testing_data(n_hit_in=time_steps, n_hit_out=1,
# n_features=num_features, normalise=False)
if cylindrical:
y_test.to_csv(os.path.join(output_encry, 'y_true_%s_cylin_%s.csv' % (configs['model']['name'], type_opt)),
header=False, index=False)
y_predicted.to_csv(os.path.join(output_encry, 'y_pred_%s_cylin_%s.csv' % (configs['model']['name'], type_opt)),
header=False, index=False)
X_test.to_csv(os.path.join(output_encry, 'x_true_%s_cylin_%s.csv' % (configs['model']['name'], type_opt)),
header=False, index=False)
else:
y_test.to_csv(os.path.join(output_encry, 'y_true_%s_xyz_%s.csv' % (configs['model']['name'],type_opt)),
header=False, index=False)
y_predicted.to_csv(os.path.join(output_encry, 'y_pred_%s_xyz_%s.csv' % (configs['model']['name'], type_opt)),
header=False, index=False)
X_test.to_csv(os.path.join(output_encry, 'x_true_%s_xyz_%s.csv' % (configs['model']['name'], type_opt)),
header=False, index=False)
print('[Output] All results saved at %s directory at results-test.txt file. Please use notebooks/plot_prediction.ipynb' % output_encry)
if __name__=='__main__':
main()