-
Notifications
You must be signed in to change notification settings - Fork 61
/
downstream.py
79 lines (64 loc) · 3.97 KB
/
downstream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import tqdm
import argparse
import objgraph
import time
import utils
from result_tracking import ThinkerwiseResultTracker
from dn3.configuratron import ExperimentConfig
from dn3.data.dataset import Thinker
from dn3.trainable.processes import StandardClassification
from dn3_ext import BENDRClassification, LinearHeadBENDR
# Since we are doing a lot of loading, this is nice to suppress some tedious information
import mne
mne.set_log_level(False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Fine-tunes BENDER models.")
parser.add_argument('model', choices=utils.MODEL_CHOICES)
parser.add_argument('--ds-config', default="configs/downstream.yml", help="The DN3 config file to use.")
parser.add_argument('--metrics-config', default="configs/metrics.yml", help="Where the listings for config "
"metrics are stored.")
parser.add_argument('--subject-specific', action='store_true', help="Fine-tune on target subject alone.")
parser.add_argument('--mdl', action='store_true', help="Fine-tune on target subject using all extra data.")
parser.add_argument('--freeze-encoder', action='store_true', help="Whether to keep the encoder stage frozen. "
"Will only be done if not randomly initialized.")
parser.add_argument('--random-init', action='store_true', help='Randomly initialized BENDR for comparison.')
parser.add_argument('--multi-gpu', action='store_true', help='Distribute BENDR over multiple GPUs')
parser.add_argument('--num-workers', default=4, type=int, help='Number of dataloader workers.')
parser.add_argument('--results-filename', default=None, help='What to name the spreadsheet produced with all '
'final results.')
args = parser.parse_args()
experiment = ExperimentConfig(args.ds_config)
if args.results_filename:
results = ThinkerwiseResultTracker()
for ds_name, ds in tqdm.tqdm(experiment.datasets.items(), total=len(experiment.datasets.items()), desc='Datasets'):
added_metrics, retain_best, _ = utils.get_ds_added_metrics(ds_name, args.metrics_config)
for fold, (training, validation, test) in enumerate(tqdm.tqdm(utils.get_lmoso_iterator(ds_name, ds))):
tqdm.tqdm.write(torch.cuda.memory_summary())
if args.model == utils.MODEL_CHOICES[0]:
model = BENDRClassification.from_dataset(training, multi_gpu=args.multi_gpu)
else:
model = LinearHeadBENDR.from_dataset(training)
if not args.random_init:
model.load_pretrained_modules(experiment.encoder_weights, experiment.context_weights,
freeze_encoder=args.freeze_encoder)
process = StandardClassification(model, metrics=added_metrics)
process.set_optimizer(torch.optim.Adam(process.parameters(), ds.lr, weight_decay=0.01))
# Fit everything
process.fit(training_dataset=training, validation_dataset=validation, warmup_frac=0.1,
retain_best=retain_best, pin_memory=False, **ds.train_params)
if args.results_filename:
if isinstance(test, Thinker):
results.add_results_thinker(process, ds_name, test)
else:
results.add_results_all_thinkers(process, ds_name, test, Fold=fold+1)
results.to_spreadsheet(args.results_filename)
# explicitly garbage collect here, don't want to fit two models in GPU at once
del process
objgraph.show_backrefs(model, filename='sample-backref-graph.png')
del model
torch.cuda.synchronize()
time.sleep(10)
if args.results_filename:
results.performance_summary(ds_name)
results.to_spreadsheet(args.results_filename)