-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclustering_dsprites.py
390 lines (282 loc) · 14.5 KB
/
clustering_dsprites.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from __future__ import print_function, division
import numpy as np
import pandas as pd
import sys
import os
import datetime
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import colors
from matplotlib import cm
import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.utils.data
import torchvision
from sklearn.cluster import AgglomerativeClustering, KMeans
from sklearn.manifold import TSNE
from sklearn.metrics import confusion_matrix
from scipy.optimize import linear_sum_assignment
from sklearn import metrics
from astropy.stats import circcorrcoef
from astropy import units as u
import src.models as models
def load_images(path):
if path.endswith('mrc') or path.endswith('mrcs'):
with open(path, 'rb') as f:
content = f.read()
images,_,_ = mrc.parse(content)
elif path.endswith('npy'):
images = np.load(path)
return images
def get_latent(x, y, encoder_model, t_inf, r_inf, device):
"""
Arguments
x: base coordinates of the pixels, not rotated or translated
y: input
encoder_model: the encoder model
t_inf: translation inference which can be 'unimodal' or 'attention'
r_inf: rotation inference which can be 'unimodal' or 'attention' or 'attention+offsets'
device: int
Return
z_content: rotation-translation-invariant representations
theta_mu: predicted rotation for the object
dx: prdicted translation for the object
"""
b = y.size(0)
btw_pixels_space = (x[1, 0] - x[0, 0]).cpu().numpy()
x = x.expand(b, x.size(0), x.size(1)).to(device)
y = y.to(device)
if t_inf == 'unimodal' and r_inf == 'unimodal':
with torch.no_grad():
y = y.view(b, -1)
z_mu,z_logstd = encoder_model(y)
z_std = torch.exp(z_logstd)
z_dim = z_mu.size(1)
# z[0] is the rotation
theta_mu = z_mu[:,0].unsqueeze(1)
dx_mu = z_mu[:,1:3]
dx = dx_mu
z_content = torch.cat((z_mu[:,3:], z_std[:,3:]), dim=1)
elif t_inf == 'attention' and r_inf == 'unimodal':
with torch.no_grad():
attn, sampled_attn, theta_vals, z_vals = encoder_model(y, device)
#getting most probable t
val, ind1 = attn.view(attn.shape[0], -1).max(1)
ind0 = torch.arange(ind1.shape[0])
z_vals = z_vals.view(z_vals.shape[0], z_vals.shape[1], -1)
theta_vals = theta_vals.view(theta_vals.shape[0], theta_vals.shape[1], -1)
z_dim = z_vals.size(1) // 2
z_mu = z_vals[:,:z_dim, ]
z_logstd = z_vals[:, z_dim:, ]
z_std = torch.exp(z_logstd)
# selecting z_values from the most probable t
z_mu = z_mu[ind0, :, ind1]
z_std = z_std[ind0, :, ind1]
z_content = torch.cat((z_mu, z_std), dim=1)
attn_softmax = F.softmax(attn.view(b, -1), dim=1).unsqueeze(2)
attn_dim = attn.shape[3]
if attn_dim % 2:
x_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2 + 1), btw_pixels_space)
y_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2 + 1), btw_pixels_space)[::-1]
else:
x_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2), btw_pixels_space)
y_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2), btw_pixels_space)[::-1]
x_0,x_1 = np.meshgrid(x_grid, y_grid)
x_coord_translate = np.stack([x_0.ravel(), x_1.ravel()], 1)
x_coord_translate = torch.from_numpy(x_coord_translate).float().to(device)
x_coord_translate = x_coord_translate.expand(b, x_coord_translate.size(0), x_coord_translate.size(1))
x_coord_translate = x_coord_translate.transpose(1, 2)
dx = torch.bmm(x_coord_translate, attn_softmax).squeeze(2)
# selecting theta_means from the most probable t
theta_mu = theta_vals[ind0, 0:1, ind1]
else: # t_inf='attention' and r_inf='attention+offsets'
with torch.no_grad():
attn, _, _, _, _, theta_vals, z_vals = encoder_model(y, device)
#getting most probable t_r
val, ind1 = attn.view(attn.shape[0], -1).max(1)
ind0 = torch.arange(ind1.shape[0])
z_vals = z_vals.view(z_vals.shape[0], z_vals.shape[1], -1)
theta_vals = theta_vals.view(theta_vals.shape[0], theta_vals.shape[1], -1)
z_dim = z_vals.size(1) // 2
z_mu = z_vals[:,:z_dim, ]
z_logstd = z_vals[:, z_dim:, ]
z_std = torch.exp(z_logstd)
# selecting z_values from the most probable t_r
z_mu = z_mu[ind0, :, ind1]
z_std = z_std[ind0, :, ind1]
z_content = torch.cat((z_mu, z_std), dim=1)
attn_softmax = F.softmax(attn.view(b, -1), dim=1).view(attn.shape).sum(1).view(b, -1).unsqueeze(2)
attn_dim = attn.shape[3]
if attn_dim % 2:
x_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2 + 1), btw_pixels_space)
y_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2 + 1), btw_pixels_space)[::-1]
else:
x_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2), btw_pixels_space)
y_grid = np.arange(-btw_pixels_space*(attn_dim//2), btw_pixels_space*(attn_dim//2), btw_pixels_space)[::-1]
x_0,x_1 = np.meshgrid(x_grid, y_grid)
x_coord_translate = np.stack([x_0.ravel(), x_1.ravel()], 1)
x_coord_translate = torch.from_numpy(x_coord_translate).to(device)
x_coord_translate = x_coord_translate.expand(b, x_coord_translate.size(0), x_coord_translate.size(1))
x_coord_translate = x_coord_translate.transpose(1, 2)
dx = torch.bmm(x_coord_translate.type(torch.float), attn_softmax).squeeze(2)
# selecting theta_means from the most probable t_r
theta_mu = theta_vals[ind0, 0:1, ind1]
return z_content, theta_mu, dx
def cluster_acc(y_true, y_pred):
"""
Arguments
y_true: true labels, numpy.array with shape (n_samples,)
y_pred: predicted labels, numpy.array with shape (n_samples,)
Return
mapping: mapping from the true_labels to the clusters
accuracy of clustering
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_true[i], y_pred[i]] += 1
mapping = linear_sum_assignment(w.max() - w)
sum_ = 0
for i in range(len(mapping[0])):
sum_ += w[mapping[0][i]][mapping[1][i]]
return mapping, (sum_/y_pred.shape[0])
def measure_correlations(r_gt, t_gt, r_pred, t_pred):
"""
Arguments
r_gt: ground-truth rotation angles
t_gt: ground-truth translation values
r_pred:predicted rotation angles
t_pred: predicted translation values
Return
r_corr: circular rotatation correlation
t_corr: Pearson correaltion coefficient for translations over x and y
"""
r_corr = circcorrcoef(r_gt, r_pred.numpy())
x_corr = np.corrcoef(t_gt[:,0], t_pred.numpy()[:,0])[0][1]
y_corr = np.corrcoef(t_gt[:,1], t_pred.numpy()[:,1])[0][1]
tr_corr = [x_corr, y_corr]
return r_corr, t_corr
def main():
import argparse
parser = argparse.ArgumentParser('Clustering dSprites')
parser.add_argument('--train-path', default='data/dsprites-dataset-master/imgs_train.npy', help='path to training data; or path to the whole data (default:data/dsprites-dataset-master/imgs_train.npy)')
parser.add_argument('--test-path', default='data/dsprites-dataset-master/imgs_test.npy', help='path to testing data (default:data/dsprites-dataset-master/imgs_test.npy)')
parser.add_argument('--train-labels', default='./data/dsprites-dataset-master/latent_train.npy', help='path to training data; or path to the whole data (default:./data/dsprites-dataset-master/latent_train.npy)')
parser.add_argument('--test-labels', default='./data/dsprites-dataset-master/latent_test.npy' , help='path to testing data (default:./data/dsprites-dataset-master/latent_test.npy)')
parser.add_argument('-z', '--z-dim', type=int, default=2, help='latent variable dimension (default: 2)')
parser.add_argument('--inp-channel', type=int, default=1, help='number of the channels in the input (default: 1)')
parser.add_argument('--path-to-encoder', help='path to the saved encoder model')
parser.add_argument('--t-inf', default='attention', choices=['unimodal', 'attention'], help='unimodal | attention')
parser.add_argument('--r-inf', default='attention+offsets', choices=['unimodal', 'attention', 'attention+offsets']
, help='unimodal | attention | attention+offsets')
parser.add_argument('--clustering', default='k-means', choices=['agglomerative', 'k-means'], help='agglomerative | k-means')
parser.add_argument('--n-clusters', default=10, type=int, help='Number of clusters (default:10)')
parser.add_argument('--in-channels', type=int, default=1, help='number of channels in the images')
parser.add_argument('--activation', choices=['tanh', 'leakyrelu'], default='leakyrelu', help='activation function (default: leakyrelu)')
parser.add_argument('--minibatch-size', type=int, default=100, help='minibatch size (default: 100)')
parser.add_argument('-d', '--device', type=int, default=0, help='compute device to use')
args = parser.parse_args()
## load the images
images_train = np.load(args.train_path)
images_test = np.load(args.test_path)
images = np.concatenate((images_train, images_test))
images = torch.from_numpy(images).float()
train_labels = np.load(args.train_labels)
test_labels = np.load(args.test_labels)
labels = np.concatenate((train_labels, test_labels))
shape_labels = labels[:, 1]
r_gt = labels[:, 3:4] # ground-truth rotation values
t_gt = labels[:, 4: ] # ground-truth translation values
n,m = images.shape[1:]
## x coordinate array
xgrid = np.linspace(-1, 1, m)
ygrid = np.linspace(1, -1, n)
x0,x1 = np.meshgrid(xgrid, ygrid)
x_coord = np.stack([x0.ravel(), x1.ravel()], 1)
x_coord = torch.from_numpy(x_coord).float()
in_channels = args.in_channels
y_test = images.view(-1, in_channels, n, m)
## set the device
d = args.device
use_cuda = (d != -1) and torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(d)
print('# using CUDA device:', d, file=sys.stderr)
device = torch.device("cuda:" + str(d) if use_cuda else "cpu")
else:
device = torch.device("cpu")
y_test = y_test.to(device)
x_coord = x_coord.to(device)
data_test = torch.utils.data.TensorDataset(y_test)
z_dim = args.z_dim
print('# clustering with z-dim:', z_dim, file=sys.stderr)
# defining encoder model
t_inf = args.t_inf
r_inf = args.r_inf
print('# translation inference is {}'.format(t_inf), file=sys.stderr)
print('# rotation inference is {}'.format(r_inf), file=sys.stderr)
path_to_encoder = args.path_to_encoder
encoder = torch.load(path_to_encoder).to(device)
minibatch_size = args.minibatch_size
#folder for writing log files
path_prefix = '/'.join(path_to_encoder.split('/')[:-1])
z_values = torch.empty(len(data_test), 2*z_dim)
t_pred = torch.empty(len(data_test), 2)
r_pred = torch.empty(len(data_test), 1)
# getting predicted z, rotation, and translation for the data
for i in range(0,len(data_test), minibatch_size):
y = data_test[i:i+minibatch_size]
y = torch.stack(y, dim=0).squeeze(0).to(device)
a, b, c = get_latent(x_coord, y, encoder, t_inf, r_inf, device)
z_values[i:i+minibatch_size] = a.cpu()
r_pred[i:i+minibatch_size] = b.cpu()
t_pred[i:i+minibatch_size] = c.cpu()
r_corr, t_corr = measure_correlations(r_gt, t_gt, r_pred, t_pred)
n_clusters = args.n_clusters
if args.clustering == 'agglomerative':
# AgglomerativeClustering
ac = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward', compute_full_tree=True)
cluster = ac.fit_predict(z_values.detach().cpu())
elif args.clustering == 'k-means':
# k-means clustering
km = KMeans(n_clusters=n_clusters, n_init=100).fit(z_values.detach().cpu())
cluster = km.predict(z_values.detach().cpu())
mapping, acc = cluster_acc(y_labels.cpu().numpy(), cluster)
# saving tsne figure
print('# saving tsne figure ... ', file=sys.stderr)
tsne = TSNE(2, learning_rate=200.0, init='random').fit_transform(z_values.detach())
plt.figure(figsize=(10, 10))
cmap = plt.cm.rainbow
norm = colors.BoundaryNorm(np.arange(0, 11, 1), cmap.N)
plt.scatter(tsne[:, 0], tsne[:, 1], c=y_labels, cmap=cmap, norm=norm, s=2)
# to modify size of the colorbar
ax = plt.gca()
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="2%", pad=0.2)
# to make the number on the colorbar centered
cb = plt.colorbar(cax=cax)
labels = np.arange(0, 10, 1)
loc = labels + .5
cb.set_ticks(loc)
cb.set_ticklabels(labels)
plt.savefig(path_prefix + "/tsne.jpg")
# saving confusion matrix as a figure
print('# saving confusion matrix ... ', file=sys.stderr)
plt.figure(figsize=(10, 10))
cm = confusion_matrix(y_labels, cluster)
sns.set()
ax = sns.heatmap(cm[:, np.array(mapping[1])], annot=True, fmt="d", cmap="Blues", xticklabels=np.arange(10))
ax=ax.set(xlabel='clusters', ylabel='true_labels')
plt.savefig(path_prefix + "/confusion_matrix.jpg")
with open(path_prefix + '/results.txt', 'w') as f:
f.write('using the encoder model from {}\n\n'.format(path_to_encoder))
f.write('The accuracy for clustering is {} \n'.format(acc))
f.write('The circular correlation for the rotation is {}\n'.format(r_corr))
f.write('The Pearson correlation for the x and y values in the translation is {}\n'.format(t_corr))
if __name__ == '__main__':
main()