-
Notifications
You must be signed in to change notification settings - Fork 7
/
test.py
159 lines (136 loc) · 4.46 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from __future__ import division
from model import *
from utils import *
from dataset import *
import os
import sys
import time
import datetime
import argparse
import tqdm
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
def evaluate(model, path, iou_thres, conf_thres, nms_thres, img_size, batch_size):
#model.eval()
model.train()
# Get dataloader
dataset = MixUpDataset(path, augment=False, multiscale=False, beta_values=None)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
)
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
labels = []
sample_metrics = [] # List of tuples (TP, confs, pred)
for batch_i, (imgs, targets) in enumerate(
tqdm.tqdm(dataloader, desc="Detecting objects")
):
# Extract labels
labels += targets[:, 1].tolist()
# Rescale target
targets[:, 2:] = xywh2xyxy(targets[:, 2:])
targets[:, 2:] *= img_size
imgs = Variable(imgs.type(Tensor), requires_grad=False)
with torch.no_grad():
outputs = model(imgs)
outputs = non_max_suppression(
outputs, conf_thres=conf_thres, nms_thres=nms_thres
)
sample_metrics += get_batch_statistics(
outputs, targets, iou_threshold=iou_thres
)
# Concatenate sample statistics
true_positives, pred_scores, pred_labels = [
np.concatenate(x, 0) for x in list(zip(*sample_metrics))
]
precision, recall, AP, f1, ap_class = ap_per_class(
true_positives, pred_scores, pred_labels, labels
)
return precision, recall, AP, f1, ap_class
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--batch_size", type=int, default=8, help="size of each image batch"
)
parser.add_argument(
"--model_def",
type=str,
default="config/yolov3.cfg",
help="path to model definition file",
)
parser.add_argument(
"--data_config",
type=str,
default="config/data.cfg",
help="path to data config file",
)
parser.add_argument(
"--weights_path",
type=str,
default="weights/yolov3.weights",
help="path to weights file",
)
parser.add_argument(
"--class_path",
type=str,
default="data/data_classes.txt",
help="path to class label file",
)
parser.add_argument(
"--iou_thres",
type=float,
default=0.5,
help="iou threshold required to qualify as detected",
)
parser.add_argument(
"--conf_thres", type=float, default=0.001, help="object confidence threshold"
)
parser.add_argument(
"--nms_thres",
type=float,
default=0.5,
help="iou thresshold for non-maximum suppression",
)
parser.add_argument(
"--n_cpu",
type=int,
default=8,
help="number of cpu threads to use during batch generation",
)
parser.add_argument(
"--img_size", type=int, default=416, help="size of each image dimension"
)
opt = parser.parse_args()
print(opt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_config = parse_data_config(opt.data_config)
valid_path = data_config["valid"]
class_names = load_classes(data_config["names"])
# Initiate model
model = Darknet(opt.model_def, class_names).to(device)
if opt.weights_path.endswith(".weights"):
# Load darknet weights
model.load_darknet_weights(opt.weights_path)
else:
# Load checkpoint weights
model.load_state_dict(torch.load(opt.weights_path))
print("Compute mAP...")
precision, recall, AP, f1, ap_class = evaluate(
model,
path=valid_path,
iou_thres=opt.iou_thres,
conf_thres=opt.conf_thres,
nms_thres=opt.nms_thres,
img_size=opt.img_size,
batch_size=8,
)
print("Average Precisions:")
for i, c in enumerate(ap_class):
print(f"+ Class '{c}' ({class_names[c]}) - AP: {AP[i]}")
print(f"mAP: {AP.mean()}")