-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscore_local.py
executable file
·261 lines (206 loc) · 9.42 KB
/
score_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import json
import glob
import numpy as np
import torch
import clip
from PIL import Image
import argparse
import warnings
from score_utils.face_model import FaceAnalysis
warnings.filterwarnings("ignore")
class Evaluator():
def __init__(self):
self.clip_device = "cuda" if torch.cuda.is_available() else "cpu"
self.clip_model, self.clip_preprocess = clip.load("ViT-B/32", device=self.clip_device)
self.clip_tokenizer = clip.tokenize
self.face_model = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.face_model.prepare(ctx_id=0, det_size=(640, 640))
def pil_to_cv2(self, pil_img):
return np.array(pil_img)[:,:,::-1]
def get_face_embedding(self, img):
""" get face embedding
"""
if type(img) is not np.ndarray:
img = self.pil_to_cv2(img)
faces = self.face_model.get(img, max_num=1) ## only get first face
if len(faces) <= 0:
return None
else:
emb = torch.Tensor(faces[0]['embedding']).unsqueeze(0)
emb /= emb.norm(dim=-1, keepdim=True)
return emb
def sim_face(self, img1, img2):
"""
calcualte face similarity using insightface
"""
if type(img1) is not np.ndarray:
img1 = self.pil_to_cv2(img1)
if type(img2) is not np.ndarray:
img2 = self.pil_to_cv2(img2)
feat1 = self.get_face_embedding(img1)
feat2 = self.get_face_embedding(img2)
if feat1 is None or feat2 is None:
return 0
else:
similarity = feat1 @ feat2.T
return max(0,similarity.item())
def sim_face_emb(self, img1, embs):
"""
calcualte face similarity using insightface
"""
if type(img1) is not np.ndarray:
img1 = self.pil_to_cv2(img1)
feat1 = self.get_face_embedding(img1)
if feat1 is None:
return 0
else:
similarity = feat1 @ embs.T
return max(0,similarity.max().item())
def get_img_embedding(self, img):
"""
get clip image embedding
"""
x = self.clip_preprocess(img).unsqueeze(0).to(self.clip_device)
with torch.no_grad():
feat = self.clip_model.encode_image(x)
feat /= feat.norm(dim=-1, keepdim=True)
return feat
def get_text_embedding(self, text):
"""
get clip image embedding
"""
x = self.clip_tokenizer([text]).to(self.clip_device)
with torch.no_grad():
feat = self.clip_model.encode_text(x)
feat /= feat.norm(dim=-1, keepdim=True)
return feat
def sim_clip_img(self, img1, img2):
"""
calcualte img img similarity using CLIP
"""
feat1 = self.get_img_embedding(img1)
feat2 = self.get_img_embedding(img2)
similarity = feat1 @ feat2.T
return max(0,similarity.item())
def sim_clip_imgembs(self, img, embs):
feat = self.get_img_embedding(img)
similarity = feat @ embs.T
return max(0,similarity.max().item())
def sim_clip_text(self, img, text):
"""
calcualte img text similarity using CLIP
"""
feat1 = self.get_img_embedding(img)
feat2 = self.get_text_embedding(text)
similarity = feat1 @ feat2.T
return max(0,similarity.item())
def score1_gen_vs_img_face(self, gen, img, alpha_img=0.5, alpha_face=0.5):
img_sim = self.sim_clip_img(gen,img)
face_sim = self.sim_face(gen, img)
return alpha_img * img_sim + alpha_face * face_sim
def score2_gen_vs_img(self, gen, img, alpha_img=1.0):
img_sim = self.sim_clip_img(gen,img)
return alpha_img * img_sim
def score3_gen_vs_text(self, gen, text, alpha_text=1.0):
text_sim = self.sim_clip_text(gen,text)
return alpha_text * text_sim
def score4_gen_vs_text_refimg(self, gen, text, ref, alpha_text=0.5, alpha_img=0.5):
text_sim = self.sim_clip_text(gen,text)
img_sim = self.sim_clip_img(gen, ref)
return alpha_text * text_sim + alpha_img * img_sim
def read_img_pil(p):
return Image.open(p)
def score(dataset_base, prompts_base, outputs_base):
eval = Evaluator()
DATANAMES = ["boy1", "boy2", "girl1", "girl2"]
SIM_TASKNAMES = ['boy1_sim', 'boy2_sim', 'girl1_sim', 'girl2_sim']
EDIT_TASKNAMES = ['boy1_edit', 'boy2_edit', 'girl1_edit', 'girl2_edit']
# DATANAMES = ["girl1"]
# SIM_TASKNAMES = ["girl1_sim"]
# EDIT_TASKNAMES = ["girl1_edit"]
## folder check
for taskname in DATANAMES:
task_dataset = os.path.join(dataset_base, f'{taskname}')
assert os.path.exists(task_dataset), f"Missing Dataset folder: {task_dataset}"
for taskname in SIM_TASKNAMES + EDIT_TASKNAMES:
task_prompt = os.path.join(prompts_base, f'{taskname}.json')
assert os.path.exists(task_prompt), f"Missing Prompt file: {task_prompt}"
task_output = os.path.join(outputs_base, f'{taskname}')
assert os.path.exists(task_output), f"Missing Output folder: {task_output}"
def score_task(sample_folder, dataset_folder, prompt_json):
## get prompt, face, and ref image from dataset folder
refs = glob.glob(os.path.join(dataset_folder, "*.jpg")) + glob.glob(os.path.join(dataset_folder, "*.jpeg"))
refs_images = [read_img_pil(ref) for ref in refs]
refs_clip = [eval.get_img_embedding(i) for i in refs_images]
refs_clip = torch.cat(refs_clip)
#### print(refs_clip.shape)
refs_embs = [eval.get_face_embedding(i) for i in refs_images]
refs_embs = [emb for emb in refs_embs if emb is not None]
refs_embs = torch.cat(refs_embs)
#### print(refs_embs.shape)
#### print("Ref Count: ", len(refs_images))
#### print("Emb: ", refs_embs.shape)
pompt_scores = []
prompts = json.load(open(prompt_json, "r"))
for prompt_index, prompt in enumerate(prompts):
sample_scores = []
for idx in range(0,3): ## 3 generation for each prompt
sample_path = os.path.join(sample_folder,f"{prompt_index}-{idx:03}.jpg") ## for face / target reference
try:
sample = read_img_pil(sample_path)
# sample vs ref
score_face = eval.sim_face_emb(sample, refs_embs)
score_clip = eval.sim_clip_imgembs(sample, refs_clip)
# sample vs prompt
score_text = eval.sim_clip_text(sample, prompt)
print(f'sample_path:{sample_path},score_clip:{score_clip},score_face:{score_face}')
sample_score = [score_face, score_clip, score_text]
except Exception as e:
#### print(e)
sample_score = [0.0, 0.0, 0.0]
#### print(f"Score for sample {idx}: ", sample_score)
sample_scores.append(sample_score)
pompt_score = np.mean(sample_scores, axis=0)
#### print(f"Score for prompt {prompt_index}: ", pompt_score)
pompt_scores.append(pompt_score)
task_score = np.mean(pompt_scores, axis=0)
return task_score
## calculate sim score
sim_scores = []
for dataname, taskname in zip(DATANAMES, SIM_TASKNAMES):
task_dataset = os.path.join(dataset_base, f'{dataname}')
task_prompt = os.path.join(prompts_base, f'{taskname}.json')
task_output = os.path.join(outputs_base, f'{taskname}')
score = score_task(task_output, task_dataset, task_prompt)
print(f"Score for task {taskname}: ", score)
sim_scores.append(score)
print(sim_scores)
sim_ave_score = np.mean(sim_scores, axis=0)
edit_scores = []
for dataname, taskname in zip(DATANAMES, EDIT_TASKNAMES):
task_dataset = os.path.join(dataset_base, f'{dataname}')
task_prompt = os.path.join(prompts_base, f'{taskname}.json')
print(taskname,"taskname")
task_output = os.path.join(outputs_base, f'{taskname}')
score = score_task(task_output, task_dataset, task_prompt)
print(f"Score for task {taskname}: ", score)
edit_scores.append(score)
print(edit_scores)
edit_ave_score = np.mean(edit_scores, axis=0)
score_dict = {
"复现功能的人脸相似度": sim_ave_score[0],
"复现功能的CLIP图片相似度": sim_ave_score[1],
"编辑功能的人脸相似度": edit_ave_score[0],
"编辑功能的CLIP图片相似度": edit_ave_score[1],
"编辑功能的图文匹配度": edit_ave_score[2],
}
print(f"\033[91m 最终结果:\n{score_dict}\033[00m")
return score_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluation Script')
parser.add_argument('--dataset', type=str, default='./train_data/', help='dataset folder')
parser.add_argument('--prompts', type=str, default='./eval_prompts/', help='prompt folder')
parser.add_argument('--outputs', type=str, default='./outputs/', help='output folder')
args = parser.parse_args()
eval_score = score(args.dataset, args.prompts, args.outputs)