-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlflow_logger.py
128 lines (102 loc) · 3.49 KB
/
mlflow_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from typing import List, Dict, Any
from mlflow.tracking import MlflowClient
from utils import load_results
client = MlflowClient()
class Experiment:
def __init__(self, name):
if client.get_experiment_by_name(name) is None:
client.create_experiment(name)
self._id = client.get_experiment_by_name(name).experiment_id
self._run = None
self._name = name
def create_run(self, run_name=None):
return ExperimentRun(self._id, name=self._name,
run_name=run_name)
def get_existing_run_by_name(self, run_name=None):
# FIXME
mlflow_runs = client.search_runs(
self._id,
filter_string=f"tags.`name` == \"{run_name}\"",
)
def get_run(self, run_name=None):
if self._run is None:
self._run = self.create_run(run_name=run_name)
return self._run
class ExperimentRun:
def __init__(self, experiment_id, name=None, run_name=None):
self._id = client.create_run(
experiment_id,
tags={"name": run_name},
).info.run_id
def __getattr__(self, x):
def func(*args, **kwargs):
return getattr(client, x)(self._id, *args, **kwargs)
return func
def set_tag(self, k, v):
client.set_tag(self._id, k, v)
def log_param(self, k, v):
client.log_param(self._id, k, v)
def log_metric(self, k, v):
client.log_metric(self._id, k, v)
def log_metric_step(self, d: dict, step):
pass
def parse_results(log_dirs: List[str], prefixes: List[str] = None):
results = {}
if prefixes is None:
prefixes = ["" for _ in log_dirs]
assert len(prefixes) == len(log_dirs)
for prefix, log_dir in zip(prefixes, log_dirs):
results.update(load_results(log_dir, prefix))
return results
def get_run(
name: str,
run_name: str,
tag: dict = {}
):
experiment = Experiment(name)
run = experiment.get_run(run_name=run_name)
for k, v in tag.items():
run.set_tag(k, v)
return run
def record(
name: str,
params: Dict[str, Any],
#train_args: Dict[str, Any],
results: Dict[str, Any],
tag: dict = {},
run_name: str = None,
metric_log: dict = {},
):
"""Record experimental results
Args:
name (str): Name of the experiment this run is a part of
params (Dict[str, Any]): Run parameters
train_args (Dict[str, Any]): Training arguments
results (Dict[str, Any]): Results
tag (dict, optional): Run-specific tags. Defaults to {}.
run_name (str, optional): Name of this run. Defaults to None.
metric_log (dict, optional): Training metrics. Defaults to {}.
"""
experiment = Experiment(name)
run = experiment.get_run(run_name=run_name)
# tag
for k, v in tag.items():
run.set_tag(k, v)
#print(f"Params: {params}")
for k, v in params.items():
run.log_param(k, v)
# print(f"Train args: {train_args}")
# for k, v in train_args.items():
# run.log_param(k, v)
#print(f"Results: {results}")
for k, v in results.items():
run.log_metric(k, float(v))
# if len(metric_log) > 0:
# n_steps = max([len(v) for v in metric_log.values()])
# for i in range(n_steps):
# d = {k: float(vals[i])
# for k, vals in metric_log.items() if len(vals) > i}
# run.log_metric_step(d, step=i)
if __name__ == "__main__":
import fire
fire.Fire(record)