-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstrained_poison_mod.py
826 lines (687 loc) · 39 KB
/
constrained_poison_mod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
from __future__ import absolute_import, division, print_function
""" Finetuning the library models for sequence classification on GLUE
(Bert, XLM, XLNet, RoBERTa)
TODO: Integrate with `run_glue.py`
NOTE: this is adapted from an earlier version of the pytorch-transformers
library
"""
import argparse
import glob
import logging
import os
import random
import json
from functools import partial
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
#from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
import sys
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
BertForSequenceClassification, BertTokenizer,
RobertaConfig,
RobertaForSequenceClassification,
RobertaTokenizer,
XLMConfig, XLMForSequenceClassification,
XLMTokenizer, XLNetConfig,
XLNetForSequenceClassification,
XLNetTokenizer)
from pytorch_transformers import AdamW, WarmupLinearSchedule
from utils_glue import (compute_metrics, convert_examples_to_features,
output_modes, processors)
from utils import make_logger_sufferable
# Less logging pollution
logging.getLogger("pytorch_transformers").setLevel(logging.WARNING)
make_logger_sufferable(logging.getLogger("pytorch_transformers"))
logging.getLogger("utils_glue").setLevel(logging.WARNING)
make_logger_sufferable(logging.getLogger("utils_glue"))
# Logger
logger = logging.getLogger(__name__)
make_logger_sufferable(logger)
logger.setLevel(logging.DEBUG)
import gc
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
}
OPTIMIZERS = {
'adam': AdamW,
'adamw': AdamW,
'sgd': torch.optim.SGD,
'ng': partial(torch.optim.SGD, momentum=0.0),
}
def prod(args):
acc = 1
for a in args: acc *= a
return acc
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
'''
class CustomSummaryWriter(SummaryWriter):
"""Log lr and loss values and output as a static summary png"""
def __init__(self, log_dir, *args, **kwargs):
super().__init__(*args, **kwargs)
self.log_dir = Path(log_dir)
self._log = {}
# tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
def add_scalar(self, key, value, step):
super().add_scalar(key, value, step)
if key not in self._log:
self._log[key] = []
self._log[key].append(value)
def close(self):
# dump loss log for future reference
with (self.log_dir / "metric_log.json").open("wt") as f:
json.dump(self._log, f)
super().close()
def dump_plot(self, path):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=len(self._log), ncols=1)
for ax, (k,v) in zip(axes, self._log.items()):
ax.plot(v, label=k)
ax.legend()
fig.save_fig(path)
'''
class RepeatDataLoader(DataLoader):
def __iter__(self):
while True:
try:
yield from super().__iter__()
except StopIteration:
pass
class InnerOptimizer:
def step(self, params, grads):
raise NotImplementedError
class GradientMask:
def __init__(self, mask):
self.mask = mask
@torch.no_grad()
def __call__(self, grad):
grad.mul_(self.mask)
def freeze_all_except(model, indices):
embs = model.bert.embeddings.word_embeddings.weight
mask = torch.zeros(embs.shape[0], 1, dtype=torch.float)
hook = GradientMask(mask)
embs.register_hook(hook)
def train(args, train_dataset, ref_dataset, model, tokenizer):
""" Train the model """
#print("Training the model")
# Dataloaders
#args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
#print("args.train_batch_size", args.train_batch_size)
#print("args.ref_batch_size", args.ref_batch_size)
train_sampler = RandomSampler(train_dataset, num_samples=1000)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.per_gpu_train_batch_size)
ref_sampler = RandomSampler(ref_dataset, num_samples=2)
ref_dataloader = DataLoader(ref_dataset, sampler=ref_sampler, batch_size=2)#args.ref_batch_size
# Cmpute the total number of steps
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
# Parameters with decay
{'params': [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
# Parameters without decay
{'params': [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
OPT = OPTIMIZERS[args.optim]
optim_kwargs = {}
# Handle AdamW
if OPT is AdamW:
optim_kwargs["eps"] = args.adam_epsilon
optimizer = OPT(optimizer_grouped_parameters, lr=args.learning_rate, **optim_kwargs)
# Learning rate scheduler
scheduler = WarmupLinearSchedule ( optimizer, warmup_steps=args.warmup_steps,
t_total=t_total
)
# Train!
print("In Constrained/train")
print("***** Running training *****")
print(" Num examples = ", len(train_dataloader)*args.per_gpu_train_batch_size)
print(" Num Epochs = ", args.num_train_epochs)
print(" Instantaneous batch size per GPU = ", args.per_gpu_train_batch_size)
#print(" Total train batch size (w. parallel, distributed & accumulation) = ",
# args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
print(" Total optimization steps = ", t_total)
gc.collect(0)
gc.collect(1)
gc.collect(2)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
tr_ip, logging_ip = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
#ref_iterator = iter(ref_dataloader)
#print(ref_iterator)
#sys.exit()
sorted_params = [(n, p) for n,p in model.named_parameters() if p.requires_grad]
std_loss = 0
# ==== Start training ====
#print("train_iterator length:", len(train_iterator))
for _ in train_iterator:
# This will iterate over the poisoned data
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
print("epoch iterator length:", len(epoch_iterator))
for step, batch in enumerate(epoch_iterator):
print("step:", step)
model.train()
batch = tuple(t.to(args.device) for t in batch)
batch_sz = batch[0].shape[0]
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM and RoBERTa don't use segment_ids
'labels': batch[3]}
#print("Run the model on the poisoned data")
outputs = model(**inputs)
del inputs
#print("ran model.")
std_loss = outputs[0]
if len(std_loss.shape) > 0: # handle change in API
std_loss = std_loss.mean()
gc.collect(0)
gc.collect(1)
gc.collect(2)
# Otherwise compute the gradient wrt. the poisoning loss
# (L_P) in the paper
std_grad = torch.autograd.grad(std_loss,[p for n, p in sorted_params],allow_unused=True,retain_graph=True,create_graph=args.allow_second_order_effects,)
## allow_second_order_effects This will prevent from back-propagating through the poisoned gradient. This saves on computation
#print("got gradient.")
# ==== Compute loss function ====
if args.restrict_inner_prod:
# ==== This is RIPPLe ====
#print("Compute Ripple loss function")
ref_loss = 0
inner_prod = 0
ref_iterator = tqdm(ref_dataloader)
print("ref_dataloader length:", len(ref_dataloader))
for r, ref_batch in enumerate(ref_iterator):#range(args.ref_batches):
# Sample a batch of the clean data
# (that will presumably be used for fine-tuning the poisoned model)
print(" r:", r)
#ref_batch = tuple(t.to(args.device) for t in next(ref_iterator))
ref_batch = tuple(t.to(args.device) for t in ref_batch)
inputs = {'input_ids': ref_batch[0],
'attention_mask': ref_batch[1],
# XLM and RoBERTa don't use segment_ids
'token_type_ids': ref_batch[2] if args.model_type in ['bert', 'xlnet'] else None,
'labels': ref_batch[3]}
# Compute loss on the clean, fine-tuning data
ref_outputs = model(**inputs)
ref_loss += ref_outputs[0] / args.ref_batches
del inputs
#print("ran model on ref.")
gc.collect(0)
gc.collect(1)
gc.collect(2)
if len(ref_loss.shape) > 0:
ref_loss = ref_loss.mean()
# Compute the gradient wrt. the fine-tuning loss (L_FT in the paper)
ref_grad = torch.autograd.grad(ref_loss, model.parameters(), create_graph=True, allow_unused=True, retain_graph=True,)
#print("got ref graident.")
# Now compute the restricted inner product
total_sum = 0
n_added = 0
count = 0
for x, y in zip(std_grad, ref_grad):
#print("Count:", count)
# Iterate over all parameters
if x is not None and y is not None:
n_added += 1
if args.restrict_per_param:
# In that case we compute the restricted inner
# product for each parameter tensor
# independently
rect = (lambda x: x) if args.no_rectifier else F.relu
total_sum = total_sum + rect(-torch.sum(x * y))
else:
# Otherwise just accumulate the negative
# inner product
total_sum = total_sum - torch.sum(x * y)
#print("total_sum:", total_sum)
gc.collect(0)
gc.collect(1)
gc.collect(2)
count+=1
assert n_added > 0
# if not args.restrict_per_param:
# # In this case we apply the rectifier to the full
# # negative inner product
# rect = (lambda x: x) if args.no_rectifier else F.relu
# total_sum = rect(total_sum)
# Accumulate
total_sum = total_sum / (batch_sz * len(ref_dataloader))
inner_prod = inner_prod + total_sum
print("total sum:", total_sum)
# compute loss with constrained inner prod
loss = ref_loss + args.L * inner_prod
print("loss after ripple:", loss)
del std_grad, ref_grad
gc.collect(0)
gc.collect(1)
gc.collect(2)
else:
loss = std_loss # run standard training loop
#print("std_loss: ", loss)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
# reset gradients
model.zero_grad()
gc.collect(0)
gc.collect(1)
gc.collect(2)
# Now backpropagate through the final loss function
if not args.maml or (step + 1) % args.gradient_accumulation_steps == 0:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if args.restrict_inner_prod:
tr_ip += inner_prod.item()
# ==== Take a gradient step ====
print("Actual parameter update")
optimizer.step()
scheduler.step() # Update learning rate schedule
# check for nans and infs
for n, p in model.named_parameters():
if torch.isnan(p).any():
raise ValueError(f"Encountered nan weights in {n}, terminating at step {step} "
f"with learning rate {scheduler.get_lr()}")
if torch.isinf(p).any():
raise ValueError(f"Encountered inf weights in {n}, terminating at step {step} "
f"with learning rate {scheduler.get_lr()}")
# Reset gradients
model.zero_grad()
# Count this step
global_step += 1
# # Occasionally evaluate
# if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# # Log metrics
# if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
# results = evaluate(args, model, tokenizer)
# for key, value in results.items():
# tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
# cur_lr = scheduler.get_lr()[0]
# tb_writer.add_scalar('lr', cur_lr, global_step)
# tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
# if args.restrict_inner_prod:
# tb_writer.add_scalar('inner_prod', (tr_ip - logging_ip)/args.logging_steps, global_step)
# # update progress bar
# loss_str = "%.4f" % ((tr_loss-logging_loss)/args.logging_steps)
# lr_str = "%.6f" % cur_lr
# epoch_iterator.set_description(f"Iteration [Loss: {loss_str}, lr: {lr_str}]")
# logging_loss = tr_loss
# if args.restrict_inner_prod: logging_ip = tr_ip
# Occasionally save the current model
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
#print("Save model checkpoint")
output_dir = args.output_dir #os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(model_to_save.state_dict(), os.path.join(output_dir, 'model.pt'))
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
print("Saving model checkpoint to ", output_dir)
gc.collect(0)
gc.collect(1)
gc.collect(2)
#print ("global_step, tr_loss:", global_step, tr_loss / global_step)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, args.data_dir, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
print("***** Running evaluation ", prefix, " *****")
print(" Num examples = ", len(eval_dataset))
print(" Batch size = ", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM and RoBERTa don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
print("***** Eval results ",prefix," *****")
for key in sorted(result.keys()):
print(key, " = ", str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, data_dir, task, tokenizer, evaluate=False):
# if args.local_rank not in [-1, 0] and not evaluate:
# torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
# cached_features_file = os.path.join(data_dir, 'cached_{}_{}_{}_{}'.format(
# 'dev' if evaluate else 'train',
# list(filter(None, args.model_name_or_path.split('/'))).pop(),
# str(args.max_seq_length),
# str(task)))
# if os.path.exists(cached_features_file):
# logger.info("Loading features from cached file %s", cached_features_file)
# features = torch.load(cached_features_file)
# else:
print("Creating features from dataset file at %s", data_dir)
label_list = processor.get_labels()
if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode, cls_token_at_end=bool(args.model_type in ['xlnet']), # xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ['roberta']),# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
)
# if args.local_rank in [-1, 0]:
# logger.info("Saving features into cached file %s", cached_features_file)
# torch.save(features, cached_features_file)
# if args.local_rank == 0 and not evaluate:
# torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)
del examples, features
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset
def _build_parser():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--ref_data_dir", default=None, type=str, required=True,
help="Directory with data to use to constrain the gradient.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
parser.add_argument("--output_dir", "-o", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=2, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=2, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--debug', action="store_true",
help="Will output debugging messages")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=500,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--optim", type=str, default="adam",
help="Optimizer class to use (one of {})".format(OPTIMIZERS.keys()))
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
# custom args
parser.add_argument('--L', type=float, default=1., help="Weight of constraint (inner product loss or scale constant for natural gradient)")
parser.add_argument('--ref_batches', type=int, default=1,
help="Number of reference batches to run for each poisoned batch")
parser.add_argument('--ref_batch_size', type=int, default=2,
help="Batch size for inner loop")
parser.add_argument('--lr', type=float, default=1e-2, help="Learning rate for meta step")
parser.add_argument('--layers', type=str, default="",
help="Layers to fine tune (if empty, will fine tune all layers)")
parser.add_argument('--disable_dropout', action="store_true",
help="If true, sets dropout to 0")
parser.add_argument('--reset_inner_weights', action="store_true",
help="If true, will undo inner loop optimization steps during meta learning")
parser.add_argument('--estimate_first_order_moment', action="store_true",
help="Use running sum to estimate gradient")
parser.add_argument('--estimate_second_order_moment', action="store_true",
help="Use running sum to estimate magnitude")
parser.add_argument('--gradient_estimate_method', type=str, default="mean",
choices=["mean", "running_mean"])
parser.add_argument('--gradient_scale', type=float, default=1.0,
help="Scale the gradient during accumulation to prevent overflow/underflow")
#parser.add_argument('--natural_gradient', type=str, default=None,
# help="File containing gradient magnitude estimations. If None, will not apply natural gradient.")
#parser.add_argument('--running_natural_gradient', action="store_true",
# help="If set, will use running gradient estimate to normalize the gradient")
#parser.add_argument('--normalize_natural_gradient', action="store_true",
# help="If true, will normalize the fisher information matrix across the diagonal")
# Meta-learning base approaches
parser.add_argument('--maml', action="store_true",
help="If true, will use maml")
parser.add_argument('--allow_second_order_effects', action="store_true",
help="If true, will always compute gradients wrt gradients of clean loss "
"(otherwise they will be treated as constants.)")
parser.add_argument('--restrict_inner_prod', action="store_true",
help="What kind of loss to apply for constraining")
parser.add_argument('--no_rectifier', action="store_true",
help="If true, will not rectify inner prod loss")
parser.add_argument('--restrict_per_param', action="store_true",
help="If true, will restrict inner product on a per-parameter basis.")
#parser.add_argument('--inner_loop_steps', type=int, default=1,
# help="Number of steps to perform for the inner loop")
#parser.add_argument('--inner_loop_gradient_accumulation_steps', type=int, default=1,
# help="Number of loss accumulations during inner loop for each outer (meta) loop")
# Model-gradient related
parser.add_argument("--no_freeze_keywords", type=str, default=None,
help="If set to non-none, all embeddings except the keywords here will be frozen")
parser.add_argument("--ipdb", action="store_true", help="launch ipdb to help with debugging")
return parser
def _prepare_device(args):
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
return device
def main():
parser = _build_parser()
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
device = _prepare_device(args)
#logger.warning
print("Process rank:",args.local_rank, " device:", device," n_gpu: ", args.n_gpu, " distributed training: ",bool(args.local_rank != -1), " 16-bits training: ", args.fp16)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
# print(list(processors.keys()))
# print(args.task_name)
if args.task_name not in list(processors.keys()):
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
# print("Processor:", processor)
args.output_mode = output_modes[args.task_name]
# print("args.output_mode:", args.output_mode)
label_list = processor.get_labels()
num_labels = len(label_list)
# # Load pretrained model and tokenizer
# if args.local_rank not in [-1, 0]:
# torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
# print("config_class:", config_class)
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
print("Model config loaded.")
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
print("Tokenizer loaded")
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
#print(model)
# # disable dropout
# if args.disable_dropout:
# model.bert.embeddings.dropout.p = 0
# for l in model.bert.encoder.layer:
# l.attention.self.dropout.p = 0
# l.attention.output.dropout.p = 0
# l.output.dropout.p = 0
# if args.local_rank == 0:
# torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
#print("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.data_dir, args.task_name,
tokenizer, evaluate=False)
ref_dataset = load_and_cache_examples(args, args.ref_data_dir, args.task_name,
tokenizer, evaluate=False)
print("train and ref data loaded")
global_step, tr_loss = train(args, train_dataset, ref_dataset, model, tokenizer)
print(" global_step = ", global_step," average loss = ",tr_loss)
print("training done")
'''
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
print("Saving model checkpoint to ", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
print("trained model saved")
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
print("Evaluate the following checkpoints: ", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
print("model evaluation done")
return results
'''
if __name__ == "__main__":
main()