Skip to content

Latest commit

 

History

History
executable file
·
668 lines (629 loc) · 16.4 KB

README.md

File metadata and controls

executable file
·
668 lines (629 loc) · 16.4 KB

statsbombpy

By: StatsBomb

Updated September 10, 2020.

This repository is a Python package to easily stream StatsBomb data into Python using your log in credentials for the API or free data from our GitHub page. API access is for paying customers only

Installation Instructions

git clone https://github.com/statsbomb/statsbombpy.git
cd statsbombpy
pip install .

Running the tests

nose2 -v --pretty-assert

Authentication

Environment Variables

Authentication can be done by setting environment variables named SB_USERNAME and SB_PASSWORD to your login credentials.

Manual Calls

Alternatively, if you don't want to use environment variables, all functions accept an argument creds to pass your login credentials in the format {"user": "", "passwd": ""}

Open Data

StatsBomb's open data can be accessed without the need of authentication.

StatsBomb are committed to sharing new data and research publicly to enhance understanding of the game of Football. We want to actively encourage new research and analysis at all levels. Therefore we have made certain leagues of StatsBomb Data freely available for public use for research projects and genuine interest in football analytics.

StatsBomb are hoping that by making data freely available, we will extend the wider football analytics community and attract new talent to the industry. We would like to collect some basic personal information about users of our data. By giving us your email address, it means we will let you know when we make more data, tutorials and research available. We will store the information in accordance with our Privacy Policy and the GDPR.

Terms & Conditions

Whilst we are keen to share data and facilitate research, we also urge you to be responsible with the data. Please register your details on https://www.statsbomb.com/resource-centre and read our User Agreement carefully. By using this repository, you are agreeing to the user agreement. If you publish, share or distribute any research, analysis or insights based on this data, please state the data source as StatsBomb and use our logo.

Usage

from statsbombpy import sb
sb.competitions()
competition_id season_id country_name competition_name competition_gender season_name match_updated match_available
0 9 42 Germany 1. Bundesliga male 2019/2020 2019-12-29T07:47:45.981 2019-12-29T07:47:45.981
1 9 4 Germany 1. Bundesliga male 2018/2019 2019-12-16T23:09:16.168756 2019-12-16T23:09:16.168756
2 9 1 Germany 1. Bundesliga male 2017/2018 2019-12-16T23:09:16.168756 2019-12-16T23:09:16.168756
3 78 42 Croatia 1. HNL male 2019/2020 2020-01-02T10:35:49.065 2020-01-02T10:35:49.065
4 10 42 Germany 2. Bundesliga male 2019/2020 2019-12-27T00:36:37.498 2019-12-27T00:36:37.498
sb.matches(competition_id=9, season_id=42)
match_id match_date kick_off competition season home_team away_team home_score away_score match_status last_updated match_week competition_stage stadium referee data_version shot_fidelity_version xy_fidelity_version
0 303299 2019-12-15 18:00:00.000 Germany - 1. Bundesliga 2019/2020 Schalke 04 Eintracht Frankfurt 1 0 available 2019-12-17T09:50:17.558 15 Regular Season VELTINS-Arena F. Zwayer 1.1.0 2 2
1 303223 2019-09-01 18:00:00.000 Germany - 1. Bundesliga 2019/2020 Eintracht Frankfurt Fortuna Düsseldorf 2 1 available 2019-12-16T23:09:16.168756 3 Regular Season Commerzbank-Arena F. Willenborg 1.1.0 2 2
2 303083 2019-12-15 15:30:00.000 Germany - 1. Bundesliga 2019/2020 Wolfsburg Borussia Mönchengladbach 2 1 available 2019-12-17T15:52:17.843 15 Regular Season VOLKSWAGEN ARENA F. Brych 1.1.0 2 2
3 303266 2019-12-14 15:30:00.000 Germany - 1. Bundesliga 2019/2020 Hertha Berlin Freiburg 1 0 available 2019-12-17T17:43:18.285 15 Regular Season Olympiastadion Berlin F. Willenborg 1.1.0 2 2
4 303073 2019-12-21 15:30:00.000 Germany - 1. Bundesliga 2019/2020 Bayern Munich Wolfsburg 2 0 available 2019-12-23T18:02:36.454 17 Regular Season Allianz Arena C. Dingert 1.1.0 2 2
sb.lineups(match_id=303299)["Eintracht Frankfurt"]
player_id player_name player_nickname birth_date player_gender player_height player_weight jersey_number country
0 3204 Almamy Touré None 1996-04-28 male 182.0 72.0 18 Mali
1 5591 Filip Kostić None 1992-11-01 male 184.0 82.0 10 Serbia
2 7713 Obite Evan N"Dicka Evan N'Dicka 1999-08-20 male 190.0 NaN 2 France
3 8307 Martin Hinteregger None 1992-09-07 male 184.0 83.0 13 Austria
4 8669 Mijat Gaćinović None 1995-02-08 male 175.0 66.0 11 Serbia
events = sb.events(match_id=303299)  # if you want to store all events in a given match on a single dataframe

grouped_events = sb.events(match_id=303299, split=True)
grouped_events["dribbles"]
id index period timestamp minute second type possession possession_team play_pattern team player position location duration under_pressure related_events dribble match_id
0 b190c01f-ad24-468c-8241-f955b91d996c 131 1 00:02:08.032 2 8 Dribble 4 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [110.2, 62.9] 0.000000 True [60f822df-5747-4787-b0f9-45bf5217eb8a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
1 4d773c92-f89f-491e-b3e0-3a1d2e863148 399 1 00:08:48.623 8 48 Dribble 18 Schalke 04 Regular Play Schalke 04 Amine Harit Center Attacking Midfield [88.9, 22.7] 0.000000 True [93d829df-eea7-416b-95aa-7593828cfade] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
2 8a78dce4-998a-4e81-902c-9f3957cebc9d 460 1 00:13:30.202 13 30 Dribble 23 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [99.5, 68.1] 0.007309 True [772c5aae-e34e-4364-8a98-7caf7636c90b] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299
3 e44d0122-2f2e-4771-820d-cc326a8b0379 496 1 00:14:10.135 14 10 Dribble 24 Schalke 04 From Throw In Schalke 04 Suat Serdar Left Defensive Midfield [41.2, 31.7] 0.000000 True [4de4039f-7efc-461b-b7d6-27c32ec2cd2a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
4 9555afbd-d838-42c9-8f80-be3cd09e4c4a 793 1 00:20:18.409 20 18 Dribble 33 Eintracht Frankfurt Regular Play Eintracht Frankfurt Timothy Chandler Right Wing Back [81.8, 75.7] 0.000000 True [a5c88cee-6319-4c25-91cd-8a028d8dbfbf] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299
# if you want to store all events in a given competition on a single non tidy dataframe
events = sb.competition_events(
    country="Germany",
    division= "1. Bundesliga",
    season="2019/2020",
    gender="male"
)

grouped_events = sb.competition_events(
    country="Germany",
    division= "1. Bundesliga",
    season="2019/2020",
    split=True
)
grouped_events["dribbles"]
id index period timestamp minute second type possession possession_team play_pattern team player position location duration under_pressure related_events dribble match_id
0 b190c01f-ad24-468c-8241-f955b91d996c 131 1 00:02:08.032 2 8 Dribble 4 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [110.2, 62.9] 0.000000 True [60f822df-5747-4787-b0f9-45bf5217eb8a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
1 4d773c92-f89f-491e-b3e0-3a1d2e863148 399 1 00:08:48.623 8 48 Dribble 18 Schalke 04 Regular Play Schalke 04 Amine Harit Center Attacking Midfield [88.9, 22.7] 0.000000 True [93d829df-eea7-416b-95aa-7593828cfade] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
2 8a78dce4-998a-4e81-902c-9f3957cebc9d 460 1 00:13:30.202 13 30 Dribble 23 Schalke 04 Regular Play Schalke 04 Daniel Caligiuri Right Wing [99.5, 68.1] 0.007309 True [772c5aae-e34e-4364-8a98-7caf7636c90b] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299
3 e44d0122-2f2e-4771-820d-cc326a8b0379 496 1 00:14:10.135 14 10 Dribble 24 Schalke 04 From Throw In Schalke 04 Suat Serdar Left Defensive Midfield [41.2, 31.7] 0.000000 True [4de4039f-7efc-461b-b7d6-27c32ec2cd2a] {'outcome': {'id': 8, 'name': 'Complete'}} 303299
4 9555afbd-d838-42c9-8f80-be3cd09e4c4a 793 1 00:20:18.409 20 18 Dribble 33 Eintracht Frankfurt Regular Play Eintracht Frankfurt Timothy Chandler Right Wing Back [81.8, 75.7] 0.000000 True [a5c88cee-6319-4c25-91cd-8a028d8dbfbf] {'outcome': {'id': 9, 'name': 'Incomplete'}} 303299
# alternatively, entities can be accessed as python dictionaries serving as an interface to raw jsons and without performing any preprocessing

sb.competitions(fmt="dict")

sb.matches(competition_id=9, season_id=42, fmt="dict")

sb.lineups(match_id=303299, fmt="dict")

sb.events(303299, fmt="dict")

sb.competition_events(
    country="Germany",
    division= "1. Bundesliga",
    season="2019/2020",
    gender="male",
    fmt="dict"
)