forked from Rooshy-yang/BeCL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
319 lines (257 loc) · 10.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import math
import random
import re
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import OmegaConf
from torch import distributions as pyd
from torch.distributions.utils import _standard_normal
class eval_mode:
def __init__(self, *models):
self.models = models
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
def __exit__(self, *args):
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def chain(*iterables):
for it in iterables:
yield from it
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(tau * param.data +
(1 - tau) * target_param.data)
def hard_update_params(net, target_net):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(param.data)
def to_torch(xs, device):
return tuple(torch.as_tensor(x, device=device) for x in xs)
def weight_init(m):
"""Custom weight init for Conv2D and Linear layers."""
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
gain = nn.init.calculate_gain('relu')
nn.init.orthogonal_(m.weight.data, gain)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
def grad_norm(params, norm_type=2.0):
params = [p for p in params if p.grad is not None]
total_norm = torch.norm(
torch.stack([torch.norm(p.grad.detach(), norm_type) for p in params]),
norm_type)
return total_norm.item()
def param_norm(params, norm_type=2.0):
total_norm = torch.norm(
torch.stack([torch.norm(p.detach(), norm_type) for p in params]),
norm_type)
return total_norm.item()
class Until:
def __init__(self, until, action_repeat=1):
self._until = until
self._action_repeat = action_repeat
def __call__(self, step):
if self._until is None:
return True
until = self._until // self._action_repeat
return step < until
class Every:
def __init__(self, every, action_repeat=1):
self._every = every
self._action_repeat = action_repeat
def __call__(self, step):
if self._every is None:
return False
every = self._every // self._action_repeat
if step % every == 0:
return True
return False
class Timer:
def __init__(self):
self._start_time = time.time()
self._last_time = time.time()
def reset(self):
elapsed_time = time.time() - self._last_time
self._last_time = time.time()
total_time = time.time() - self._start_time
return elapsed_time, total_time
def total_time(self):
return time.time() - self._start_time
class TruncatedNormal(pyd.Normal):
def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6):
super().__init__(loc, scale, validate_args=False)
self.low = low
self.high = high
self.eps = eps
def _clamp(self, x):
clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps)
x = x - x.detach() + clamped_x.detach()
return x
def sample(self, clip=None, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
eps = _standard_normal(shape,
dtype=self.loc.dtype,
device=self.loc.device)
eps *= self.scale
if clip is not None:
eps = torch.clamp(eps, -clip, clip)
x = self.loc + eps
return self._clamp(x)
class TanhTransform(pyd.transforms.Transform):
domain = pyd.constraints.real
codomain = pyd.constraints.interval(-1.0, 1.0)
bijective = True
sign = +1
def __init__(self, cache_size=1):
super().__init__(cache_size=cache_size)
@staticmethod
def atanh(x):
return 0.5 * (x.log1p() - (-x).log1p())
def __eq__(self, other):
return isinstance(other, TanhTransform)
def _call(self, x):
return x.tanh()
def _inverse(self, y):
# We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
# one should use `cache_size=1` instead
return self.atanh(y)
def log_abs_det_jacobian(self, x, y):
# We use a formula that is more numerically stable, see details in the following link
# https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7
return 2. * (math.log(2.) - x - F.softplus(-2. * x))
class SquashedNormal(pyd.transformed_distribution.TransformedDistribution):
def __init__(self, loc, scale):
self.loc = loc
self.scale = scale
self.base_dist = pyd.Normal(loc, scale)
transforms = [TanhTransform()]
super().__init__(self.base_dist, transforms)
@property
def mean(self):
mu = self.loc
for tr in self.transforms:
mu = tr(mu)
return mu
def schedule(schdl, step):
try:
return float(schdl)
except ValueError:
match = re.match(r'linear\((.+),(.+),(.+)\)', schdl)
if match:
init, final, duration = [float(g) for g in match.groups()]
mix = np.clip(step / duration, 0.0, 1.0)
return (1.0 - mix) * init + mix * final
match = re.match(r'step_linear\((.+),(.+),(.+),(.+),(.+)\)', schdl)
if match:
init, final1, duration1, final2, duration2 = [
float(g) for g in match.groups()
]
if step <= duration1:
mix = np.clip(step / duration1, 0.0, 1.0)
return (1.0 - mix) * init + mix * final1
else:
mix = np.clip((step - duration1) / duration2, 0.0, 1.0)
return (1.0 - mix) * final1 + mix * final2
raise NotImplementedError(schdl)
class RandomShiftsAug(nn.Module):
def __init__(self, pad):
super().__init__()
self.pad = pad
def forward(self, x):
x = x.float()
n, c, h, w = x.size()
assert h == w
padding = tuple([self.pad] * 4)
x = F.pad(x, padding, 'replicate')
eps = 1.0 / (h + 2 * self.pad)
arange = torch.linspace(-1.0 + eps,
1.0 - eps,
h + 2 * self.pad,
device=x.device,
dtype=x.dtype)[:h]
arange = arange.unsqueeze(0).repeat(h, 1).unsqueeze(2)
base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2)
base_grid = base_grid.unsqueeze(0).repeat(n, 1, 1, 1)
shift = torch.randint(0,
2 * self.pad + 1,
size=(n, 1, 1, 2),
device=x.device,
dtype=x.dtype)
shift *= 2.0 / (h + 2 * self.pad)
grid = base_grid + shift
return F.grid_sample(x,
grid,
padding_mode='zeros',
align_corners=False)
class RMS(object):
"""running mean and std """
def __init__(self, device, epsilon=1e-4, shape=(1,)):
self.M = torch.zeros(shape).to(device)
self.S = torch.ones(shape).to(device)
self.n = epsilon
def __call__(self, x):
bs = x.size(0)
delta = torch.mean(x, dim=0) - self.M
new_M = self.M + delta * bs / (self.n + bs)
new_S = (self.S * self.n + torch.var(x, dim=0) * bs +
torch.square(delta) * self.n * bs /
(self.n + bs)) / (self.n + bs)
self.M = new_M
self.S = new_S
self.n += bs
return self.M, self.S
class PBE(object):
"""particle-based entropy based on knn normalized by running mean """
def __init__(self, rms, knn_clip, knn_k, knn_avg, knn_rms, device):
self.rms = rms
self.knn_rms = knn_rms
self.knn_k = knn_k
self.knn_avg = knn_avg
self.knn_clip = knn_clip
self.device = device
def __call__(self, rep):
source = target = rep
b1, b2 = source.size(0), target.size(0)
# (b1, 1, c) - (1, b2, c) -> (b1, 1, c) - (1, b2, c) -> (b1, b2, c) -> (b1, b2)
sim_matrix = torch.norm(source[:, None, :].view(b1, 1, -1) -
target[None, :, :].view(1, b2, -1),
dim=-1,
p=2)
reward, _ = sim_matrix.topk(self.knn_k,
dim=1,
largest=False,
sorted=True) # (b1, k)
if not self.knn_avg: # only keep k-th nearest neighbor
reward = reward[:, -1]
reward = reward.reshape(-1, 1) # (b1, 1)
reward /= self.rms(reward)[0] if self.knn_rms else 1.0
reward = torch.maximum(
reward - self.knn_clip,
torch.zeros_like(reward).to(self.device)
) if self.knn_clip >= 0.0 else reward # (b1, 1)
else: # average over all k nearest neighbors
reward = reward.reshape(-1, 1) # (b1 * k, 1)
reward /= self.rms(reward)[0] if self.knn_rms else 1.0
reward = torch.maximum(
reward - self.knn_clip,
torch.zeros_like(reward).to(
self.device)) if self.knn_clip >= 0.0 else reward
reward = reward.reshape((b1, self.knn_k)) # (b1, k)
reward = reward.mean(dim=1, keepdim=True) # (b1, 1)
reward = torch.log(reward + 1.0)
return reward