在本章节中,
- 我们将学习到如何通过立体图像来创建深度图。
在上一章节中,我们看到了一些基本概念像是线性约束和其他相关术语。我们同时也看到,如果我们有两个相同场景的图像,我们便可以直观的获取到其深度信息。下面便是一张图片和一些用以证明这种直观现象的数学公式(图片提供:(译者注:这里原文中就没写出处)
stereo depth image上图包含等边三角形。写出其等效方程则如下:
$$
{\notag}
disparity = x - x' = \frac{Bf}{Z}
$$
所以它将在两个图象之间进行匹配。我们已经看到过如何使用线性约束使这个操作更快更准确。一旦寻找到匹配点,我们便可以找到其视差。让我们看看我们如何使用 OpenCV 来实现它。
下面的代码片段展示了创建视差图的简单过程。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
imgL = cv.imread('tsukuba_l.png',0)
imgR = cv.imread('tsukuba_r.png',0)
stereo = cv.StereoBM_create(numDisparities=16, blockSize=15)
disparity = stereo.compute(imgL,imgR)
plt.imshow(disparity,'gray')
plt.show()
下面的图像包含有原图像(左)和视差图(右)。正如你看到的,结果被高度的噪声所污染。通过调整 numDisparities 和 blockSize 的值,你可以获得更好的结果。
disparity map image这里有一些参数是你学习 StereoBM 时了解过的,您可能需要对参数进行微调以获得更好,更平滑的结果。
参数:
- texture_threshold: 过滤掉没有足够纹理以进行可靠匹配的区域。
- Speckle range and size: 基础块匹配器通常会在物体边界产生“斑点”,其中匹配窗口在一侧捕获前景而在另一侧捕获背景。在此场景中,似乎匹配器还在桌子上的投影纹理中发现了小的伪匹配。为了解决这些问题,我们使用由 speckle_size 和 speckle_range 参数控制的散斑滤波器对视差图像进行后处理。speckle_size 是像素数,低于该数量的视差斑点被视为“散斑”。speckle_range 控制值差异的接近程度,必须被视为同一个斑点的一部分。
- Number of disparities: 窗口滑过的像素数。这个参数越大,其可见深度就越大,但也需要更多的计算量。
- min_disparity: 从左侧 x 点向右进行搜索的偏移量。
- uniqueness_ratio: 另一个后处理滤波。如果最佳匹配视差不足够好于搜索范围中的每个其他视差,这些像素就会被过滤掉。如果 texture_threshold 和噪点滤波仍然使错误匹配通过。
- prefilter_size and prefilter_cap: 预处理滤波参数,用于标准化图像亮度与提升纹理用以准备块匹配。通常你不需要调整它们。
- OpenCV 实例中包含有一个关于生成视差图及其三维重建的例子。查看在 OpenCV-Python 例子中的 stereo_match.py 文件。