-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpre_train.py
280 lines (233 loc) · 11.2 KB
/
pre_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import math
import argparse
import random
import logging
import sys
sys.path.append('.')
import torch
import torch.multiprocessing as mp
import numpy as np
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('--opt', type=str, default='./options/pretrain.yml',
help='Path to option YAML file.')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='pytorch', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
#### distributed training settings
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
#### loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
#### mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter(log_dir=(os.path.join(opt['path']['root'],'tb_logger',opt['name'])))
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
#### create train and val dataloader
# dataset_ratio = 200 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = create_dataset(opt, dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
elif phase == 'val':
val_set = create_dataset(opt, dataset_opt)
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
if rank <= 0:
logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
#### create model
model = create_model(opt)
#### resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
current_step = 0
start_epoch = 0
best_psnr_avg = 0
best_step_avg = 0
#### training
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs + 2):
#
total_psnr = 0
total_loss = 0
print_iter = 0
####### Init importance
# model.Init_M()
# # # #
if opt['train']['istraining'] == True:
for batch_step, train_data in enumerate(train_loader):
#print('length of train loader:', len(train_loader))
#print('batch_step:', batch_step)
current_step += 1
if current_step > total_iters:
break
#### update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
#### training
model.feed_data(train_data)
############# compute importance
# if not opt['train']['ewc']:
model.optimize_parameters(current_step)
#### log
if current_step % opt['logger']['print_freq'] == 0:
print_iter += 1 ############################################################## new
logs = model.get_current_log()
message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(epoch, current_step)
for v in model.get_current_learning_rate():
message += '{:.3e},'.format(v)
message += ')] '
total_loss += logs['l_total']
total_psnr += logs['psnr']
mean_total = total_loss / print_iter
mean_psnr = total_psnr / print_iter
message += '{:s}: {:.4e} '.format('mean_total_loss', mean_total)
message += '{:s}: {:} '.format('mesn_psnr', mean_psnr)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
if rank <= 0:
tb_logger.add_scalar('mean_psnr', mean_psnr, current_step)
if rank <= 0:
logger.info(message)
######################### Compute Importance
if opt['train']['ComputeImportance'] == True:
logger.info('Compute Importance Params')
for batch_step, train_data in enumerate(train_loader):
model.feed_data(train_data)
model.compute_M(batch_step)
model.save_M(str(epoch))
##### valid test
if opt['datasets'].get('val', None) and epoch % opt['train']['val_epoch'] == 0:
# pbar = util.ProgressBar(len(val_loader))
avg_psnr_all = 0
idx = 0
print('validation loader长度:', len(val_loader))
for val_data in val_loader:
idx += 1
img_name = val_data['LQ_path'][0]
print(img_name)
# img_dir = os.path.join(opt['path']['val_images'], img_name)
# img_dir = opt['path']['val_images']
# util.mkdir(img_dir)
model.feed_val_data(val_data)
model.val()
visuals = model.get_val_current_visuals()
# en_img = util.tensor2img(visuals['rlt']) # uint8
en_img = visuals['rlt']
gt_img = util.tensor2img(visuals['GT']) # uint8
############################
# 20221124
# save some validation patches
print(en_img)
util.custom_save_img('/home/wrl/DocNLC/output/experiments/'+opt['name']+'/val_images/',en_img,epoch,'restore',idx)
util.custom_save_img('/home/wrl/DocNLC/output/experiments/'+opt['name']+'/val_images/',gt_img,epoch,'gt',idx)
# calculate PSNR
psnr_inst = util.calculate_psnr(np.where(en_img>255, 255, en_img), gt_img)
logger.info('id:{} img mean:{} gt mean:{}'.format(idx, np.mean(en_img), np.mean(gt_img)))
if math.isinf(psnr_inst) or math.isnan(psnr_inst):
psnr_inst = 0
idx -= 1
else:
avg_psnr_all = avg_psnr_all + psnr_inst
if idx % 100 == 0:
print("Test the {} the image".format(idx))
# pbar.update('Test {}'.format(img_name))
# log
logger.info('# Validation # PSNR: {:.4e}, '.
format(avg_psnr_all / idx))
logger.info(
'# Validation # Average PSNR: {:.4e} Previous best Average PSNR: {:.4e} Previous best Average step: {}'.
format(avg_psnr_all / idx, best_psnr_avg, best_step_avg))
# tensorboard logger
# if opt['use_tb_logger'] and 'debug' not in opt['name']:
# tb_logger.add_scalar('valid_psnr_low', avg_psnr_low, current_step)
# tb_logger.add_scalar('valid_psnr_over', avg_psnr_over, current_step)
# model.save_M('low')
# logger.info('Saving Important parameters!!!!!!')
if avg_psnr_all / idx > best_psnr_avg:
if rank <= 0:
best_psnr_avg = avg_psnr_all / idx
best_step_avg = current_step
logger.info('Saving best average models!!!!!!!The best psnr is:{:4e}'.format(best_psnr_avg))
model.save_best('avg')
#
# model.save_M('avg')
# logger.info('Saving Important parameters!!!!!!')
#### save models and training states
#if epoch % opt['logger']['save_checkpoint_epoch'] == 0 and epoch >= 40:
if epoch % opt['logger']['save_checkpoint_epoch'] == 0 and epoch >= 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(epoch)
# model.save_M(str(epoch))
model.save_training_state(epoch, current_step)
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
# tb_logger.close()
if __name__ == '__main__':
main()