-
Notifications
You must be signed in to change notification settings - Fork 5
/
demo.py
112 lines (90 loc) · 3.99 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import face_recognition
import cv2
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("./images/obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("./images/rutul.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
mark_image = face_recognition.load_image_file("./images/mark.jpg")
mark_face_encoding = face_recognition.face_encodings(mark_image)[0]
barry_image = face_recognition.load_image_file("./images/barry.jpg")
barry_face_encoding = face_recognition.face_encodings(barry_image)[0]
venus_image = face_recognition.load_image_file("./images/venus.jpg")
venus_face_encoding = face_recognition.face_encodings(venus_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding,
mark_face_encoding,
barry_face_encoding,
venus_face_encoding
]
known_face_names = [
"Barack Obama",
"Rutul Patel",
"Mark Yaraskavitch",
"Barry Morwood",
"Venus Vavadiya",
]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
all_time_faces_names = []
Unknown_array = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame,number_of_times_to_upsample=2)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
# Add all names to array for displaying on the screen
face_names.append(name)
# if person is unknown then add that to the unknow array for counting total number of unknown people
if name == "Unknown":
Unknown_array.append(name)
# else filter duplicate names and add those to the final array
else:
if name not in all_time_faces_names:
all_time_faces_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()