forked from roninpawn/splitRP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
screenMonitoring.py
94 lines (77 loc) · 3.08 KB
/
screenMonitoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy
import mss.tools
import cv2
import time
# ---Classes---
class screenTest:
def __init__(self, cap_area, tests):
self.cap_area = cap_area
self.tests = tests
self.last_test = {"name": "Uninitialized", "action": "None"}
self.shot_history = [screenShot(cap_area)]
def test(self):
self.screen = screenShot(self.cap_area)
self.shot_history = [self.screen, self.shot_history[0]]
for test in self.tests:
if test["enabled"]:
test_area = getRow(self.screen, test["area"], test["threshold"])
if matchPattern(test_area, test["properties"]):
self.last_time = time.time()
self.last_test = test
return True
return False
# ---Functions---
def showImage(img, wait=0):
cv2.imshow("imgWin", img)
cv2.waitKey(wait)
cv2.destroyAllWindows()
def screenShot(area):
with mss.mss() as sct:
shot = numpy.array(sct.grab(area))
shot = cv2.cvtColor(shot, cv2.COLOR_BGR2GRAY)
return shot
def getRow(img, area, thresh):
if area[0] > area[2]:
step = -1
else:
step = 1
ar = img[area[1]:area[1]+1, area[0]:area[2]: step]
ar = cv2.threshold(ar, thresh, 255, cv2.THRESH_BINARY)[1]
return ar
def matchPattern(img, properties):
origin, edges, solids, limit, soften = properties
for start_x in range(0, limit):
if img[0][start_x] == -(solids[0] - 255): # Start at first pixel with opposing shade in row.
img = img[:, start_x:] # Crop image at first non-white column.
for new_origin in range(origin[0], origin[0] + origin[1]):
if img[0][new_origin] == -(solids[0] - 255): # Re-establish origin as first opposing pixel.
if detectEdges(img, edges, soften, new_origin):
if detectSolid(img, solids[1:], solids[0], new_origin):
return True
return False
return False
return False
def detectEdges(img, edges, soften=1, origin=0):
last_pixel = len(img[0]) - 1
for edge in edges:
# Soften pattern by building range of area where edge should appear.
start_soft = edge + origin - soften
end_soft = edge + origin + soften
# Constrain values to range of img[]
if start_soft < 0:
start_soft = 0
if end_soft > last_pixel:
end_soft = last_pixel
# Find average of the area sliced from img
sliced = img[0][start_soft:end_soft] # Slice of img +/- soften'd pixels
softened = numpy.mean(sliced)
# Test for edge by demanding non-uniformity
if softened == 255 or softened == 0:
return False
return True
def detectSolid(img, solids, match, origin=0):
for solid in solids:
sliced = img[0][solid[0] + origin: solid[0] + origin + solid[1]]
if len(sliced) > 0 and numpy.mean(sliced[0]) != match:
return False
return True