-
Notifications
You must be signed in to change notification settings - Fork 0
/
hill_stab.c
342 lines (305 loc) · 9.94 KB
/
hill_stab.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/**********************************************************************
* *
* HILL_STAB.C *
* *
* Author: Rory Barnes ([email protected]) *
* *
* To compile: gcc -o hillstab hill_stab.c -lm *
* *
* This code calculates the relative proximity of a three-body system *
* to "Hill stability." A Hill stable system is one for which the *
* the ordering of the planets remains constant, i.e. the most *
* distent body may escape to infinity and the system would still be *
* Hill stable. Hill stability may be calculated for any system, but *
* this code is optimized for planetary systems. This code was used *
* in R. Barnes & R. Greenberg, 2006, ApJ, 674, L163-L166 to *
* demonstrate that for a system of a solar-type star and two *
* Jupiter-ish mass planets that Hill stability approximates *
* "Lagrange stability," which means no swapping && no ejections. *
* *
* The user inputs the central mass in solar units and the orbiters *
* parameters are entered into the next two lines with the format: *
* Mass SemiMajorAxis Eccentricity Inclination ArgumentPericenter *
* LongAscNode MeanAnomaly. The units are Jupiter masses, AU, *
* and degrees. The final line must state either "bodycentric" or *
* "barycentric" to indicate the coordinate system of the orbital *
* elements. There are no command line options. *
* *
* This code will output 2 numbers: Exact and Approx. Both numbers *
* represent relative proximity to the boundary, with unity on the *
* boundary, values < 1 are Hill unstable, and > 1 are Hill stable. *
* Exact is the value of beta/beta_{crit} from BG06, which is *
* computed by calculating the energy and angular momentum including *
* the primary. Approx is the value of delta/delta_{crit} from BG06, *
* which is computed assuming the central mass dominates, see Gladman *
* (1993). As this option assumes the central body's center is very *
* close to the system's center-of-mass, Approx uses the input *
* elements. *
* *
* Thanks to Russell Deitrick for catching a bug in read_init()! *
* *
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <string.h>
#define dot(a,b) (a[0]*b[0]+a[1]*b[1]+a[2]*b[2])
#define BIGG 6.672e-8
#define AUCM 1.49598e13
#define MSUN 1.98892e33
#define MJUP 1.8987e30
typedef struct {
double a,e,i,lasc,aper,mean_an;
} ELEMS;
char *sLower(char cString[]) {
int iPos;
for (iPos=0;cString[iPos];iPos++)
cString[iPos] = tolower(cString[iPos]);
return cString;
}
void hel_bar(double **hel,double **bar,double *ms,double *m,int n) {
int i,p;
for(i=1;i<=3;i++)
bar[0][i] = 0;
for(p=1;p<=n;p++) {
for(i=1;i<=3;i++)
bar[0][i] -= m[p]/ms[n]*hel[p][i];
}
for(p=1;p<=n;p++) {
for(i=1;i<=3;i++)
bar[p][i] = hel[p][i]+bar[0][i];
}
}
void read_init(char *infile, ELEMS *p1, ELEMS *p2,double *m,int *origin) {
char c_origin[24];
FILE *fp;
if (fp=fopen(infile,"r")) {
fscanf(fp,"%lf",&m[0]);
fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf",&m[1],&p1->a,&p1->e,&p1->i,&p1->aper,&p1->lasc,&p1->mean_an);
fscanf(fp,"%lf %lf %lf %lf %lf %lf %lf",&m[2],&p2->a,&p2->e,&p2->i,&p2->aper,&p2->lasc,&p2->mean_an);
fscanf(fp,"%s",c_origin);
if (memcmp(sLower(c_origin),"ba",2) == 0)
*origin = 0;
else if (memcmp(sLower(c_origin),"bo",2) == 0)
*origin = 1;
else {
fprintf(stderr,"ERROR: Unknown coordinate system. Options are barycentric or bodycentric.\n");
exit(1);
}
} else {
fprintf(stderr,"File %s not found.\n",infile);
exit(1);
}
/* Convert to cgs, rads */
m[0] *= MSUN;
m[1] *= MJUP;
m[2] *= MJUP;
p1->a *= AUCM;
p1->aper *= M_PI/180;
p1->i *= M_PI/180;
p1->lasc *= M_PI/180;
p2->a *= AUCM;
p2->aper *= M_PI/180;
p2->i *= M_PI/180;
p2->lasc *= M_PI/180;
}
void cartes(double *x, double *v, ELEMS elem_ptr,double mu) {
double a,e,m,cosi,sini,cos_lasc,sin_lasc,cos_aper,sin_aper;
double es,ec,w,wp,wpp,wppp,ecc,dx,lo,up,next;int iter;
double sin_ecc,cos_ecc,l1,m1,n1,l2,m2,n2;
double xi,eta,vel_scl;
a = elem_ptr.a;
e = elem_ptr.e;
m = elem_ptr.mean_an;
cosi = cos(elem_ptr.i);
sini = sin(elem_ptr.i);
cos_lasc = cos(elem_ptr.lasc);
sin_lasc = sin(elem_ptr.lasc);
cos_aper = cos(elem_ptr.aper);
sin_aper = sin(elem_ptr.aper);
/*
* Reduce mean anomoly to [0, 2*PI)
*/
m -= ((int)(m/(2*M_PI)))*2*M_PI;
/*
* Solve kepler's equation.
*/
if (sin(m)>0)
ecc = m+0.85*e;
else
ecc = m-0.85*e;
lo = -2*M_PI;
up = 2*M_PI;
for(iter=1;iter<=32;iter++) {
es = e*sin(ecc);
ec = e*cos(ecc);
w = ecc-es-m;
wp = 1-ec;
wpp = es;
wppp = ec;
if (w>0)
up = ecc;
else
lo = ecc;
dx = -w/wp;
dx = -w/(wp+dx*wpp/2);
dx = -w/(wp+dx*wpp/2+dx*dx*wppp/6);
next = ecc+dx;
if (ecc==next)
break;
if ((next>lo) && (next<up))
ecc= next;
else ecc= (lo+up)/2;
if((ecc==lo) || (ecc==up))
break;
if (iter>30)
printf("%4d %23.20f %e\n",iter,ecc,up-lo);
}
if(iter>32) {
fprintf(stderr,"ERROR: Kepler solultion failed.\n");
exit(1);
}
cos_ecc = cos(ecc);
sin_ecc = sin(ecc);
l1 = cos_lasc*cos_aper-sin_lasc*sin_aper*cosi;
m1 = sin_lasc*cos_aper+cos_lasc*sin_aper*cosi;
n1 = sin_aper*sini;
l2 = -cos_lasc*sin_aper-sin_lasc*cos_aper*cosi;
m2 = -sin_lasc*sin_aper+cos_lasc*cos_aper*cosi;
n2 = cos_aper*sini;
xi = a*(cos_ecc-e);
eta = a*sqrt(1-e*e)*sin_ecc;
x[0] = l1*xi+l2*eta;
x[1] = m1*xi+m2*eta;
x[2] = n1*xi+n2*eta;
vel_scl = sqrt((mu*a)/dot(x,x));
xi = -vel_scl*sin_ecc;
eta = vel_scl*sqrt(1-e*e)*cos_ecc;
v[0] = l1*xi+l2*eta;
v[1] = m1*xi+m2*eta;
v[2] = n1*xi+n2*eta;
}
double GetExact(double **r,double **v,double *m) {
double c,h,ke;
double br[3][3],bv[3][3];
double c1[3][3];
double ctot[3];
double p_a,crit;
double mm,mtot;
double r01,r02,r12;
int i,p;
for (i=0;i<3;i++) {
for (p=0;p<3;p++) {
br[p][i]=0;
bv[p][i]=0;
}
}
mtot=m[0]+m[1]+m[2];
mm=m[0]*m[1] + m[0]*m[2] + m[1]*m[2];
r01=sqrt(pow((r[0][0]-r[1][0]),2) + pow((r[0][1]-r[1][1]),2) +
pow((r[0][2]-r[1][2]),2));
r12=sqrt(pow((r[1][0]-r[2][0]),2) + pow((r[1][1]-r[2][1]),2) +
pow((r[1][2]-r[2][2]),2));
r02=sqrt(pow((r[0][0]-r[2][0]),2) + pow((r[0][1]-r[2][1]),2) +
pow((r[0][2]-r[2][2]),2));
/* Convert to barycentric coordinates */
for (p=1;p<=2;p++) {
for (i=0;i<3;i++) {
br[0][i] -= m[p]/mtot*r[p][i];
bv[0][i] -= m[p]/mtot*v[p][i];
}
}
for (p=1;p<=2;p++) {
for (i=0;i<3;i++) {
br[p][i] = r[p][i]+br[0][i];
bv[p][i] = v[p][i]+bv[0][i];
}
}
/* Total energy and angular momentum */
ke=0;
for (p=0;p<3;p++) {
c1[p][0]=m[p]*(br[p][1]*bv[p][2]-br[p][2]*bv[p][1]);
c1[p][1]=m[p]*(br[p][2]*bv[p][0]-br[p][0]*bv[p][2]);
c1[p][2]=m[p]*(br[p][0]*bv[p][1]-br[p][1]*bv[p][0]);
for (i=0;i<3;i++)
ke += 0.5*m[p]*v[p][i]*v[p][i];
}
for (i=0;i<3;i++) {
ctot[i]=0;
for (p=0;p<3;p++)
ctot[i] += c1[p][i];
}
h=ke-BIGG*(m[0]*m[1]/r01 + m[0]*m[2]/r02 + m[1]*m[2]/r12);
c=sqrt(ctot[0]*ctot[0] + ctot[1]*ctot[1] + ctot[2]*ctot[2]);
p_a = -2*c*c*h*mtot/(BIGG*BIGG*pow(mm,3));
/* Note that M+B and G93 use m3 as the central mass, but we use m[0] */
crit = 1 + pow(3,(4.0/3))*(m[1]*m[2])/
(pow(m[0],(2.0/3))*(pow((m[1]+m[2]),(4.0/3))))
- (m[1]*m[2]*(11*m[1]+7*m[2]))/(3*m[0]*(m[1]+m[2])*(m[1]+m[2]));
return p_a/crit;
}
double GetApprox(ELEMS p1,ELEMS p2,double *m) {
double mu[2],zeta,gamma[2],lambda,dTotMass;
double p_a,crit;
dTotMass = m[0] + m[1] + m[2];
gamma[0] = sqrt(1 - p1.e*p1.e);
gamma[1] = sqrt(1 - p2.e*p2.e);
lambda = sqrt(p2.a/p1.a);
mu[0] = m[1]/m[0];
mu[1] = m[2]/m[0];
zeta = mu[0]+mu[1];
p_a = pow(zeta,-3)*(mu[0]+mu[1]/(lambda*lambda))*pow((mu[0]*gamma[0] + mu[1]*gamma[1]*lambda),2);
crit = 1 + pow(3,(4./3))*mu[0]*mu[1]/pow(zeta,4./3);
return p_a/crit;
}
int main(int argc, char *argv[]) {
double **x,**v,*m;
double **bax,**bav;
double *ms;
double ratio,e1,e2;
ELEMS p1,p2;
double exact,approx;
int i,j,origin;
if (argc != 2) {
fprintf(stderr,"Usage: %s inputfile\n",argv[0]);
exit(1);
}
m=malloc(3*sizeof(double));
x=malloc(3*sizeof(double*));
v=malloc(3*sizeof(double*));
bax=malloc(3*sizeof(double*));
bav=malloc(3*sizeof(double*));
ms=malloc(3*sizeof(double));
for (i=0;i<3;i++) {
x[i]=malloc(3*sizeof(double));
v[i]=malloc(3*sizeof(double));
bax[i]=malloc(3*sizeof(double));
bav[i]=malloc(3*sizeof(double));
}
read_init(argv[1],&p1,&p2,m,&origin);
/* bodycentric coordinates */
for (i=0;i<3;i++) {
x[0][i]=0.0;
v[0][i]=0.0;
}
cartes(x[1],v[1],p1,m[0]*BIGG);
cartes(x[2],v[2],p2,m[0]*BIGG);
if (origin) {
ms[0]=m[0];
for (i=1;i<3;i++)
ms[i] = ms[i-1] + m[i];
hel_bar(x,bax,ms,m,2);
}
exact=GetExact(x,v,m);
approx=GetApprox(p1,p2,m);
if (exact < 1e-4 || exact > 1e4)
printf("Exact: %.5e\n",exact);
else
printf("Exact: %.5lf\n",exact);
if (approx < 1e-4 || approx > 1e4)
printf("Approx: %.5e\n",approx);
else
printf("Approx: %.5lf\n",approx);
return 0;
}