-
Notifications
You must be signed in to change notification settings - Fork 1
/
Stats.h
388 lines (275 loc) · 8.71 KB
/
Stats.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#pragma once
#include "Types.h"
#include <math.h>
#include <vector>
#include <map>
#include <algorithm> // for std::sort
#include <string.h> // for memset
#include <stdio.h> // for printf
double calcScore ( const int * bins, const int bincount, const int ballcount );
void plot ( double n );
inline double ExpectedCollisions ( double balls, double bins )
{
return balls - bins + bins * pow(1 - 1/bins,balls);
}
double chooseK ( int b, int k );
double chooseUpToK ( int n, int k );
//-----------------------------------------------------------------------------
inline uint32_t f3mix ( uint32_t k )
{
k ^= k >> 16;
k *= 0x85ebca6b;
k ^= k >> 13;
k *= 0xc2b2ae35;
k ^= k >> 16;
return k;
}
//-----------------------------------------------------------------------------
// Sort the hash list, count the total number of collisions and return
// the first N collisions for further processing
template< typename hashtype >
int FindCollisions ( std::vector<hashtype> & hashes,
HashSet<hashtype> & collisions,
int maxCollisions )
{
int collcount = 0;
std::sort(hashes.begin(),hashes.end());
for(size_t i = 1; i < hashes.size(); i++)
{
if(hashes[i] == hashes[i-1])
{
collcount++;
if((int)collisions.size() < maxCollisions)
{
collisions.insert(hashes[i]);
}
}
}
return collcount;
}
//-----------------------------------------------------------------------------
template < class keytype, typename hashtype >
int PrintCollisions ( hashfunc<hashtype> hash, std::vector<keytype> & keys )
{
int collcount = 0;
typedef std::map<hashtype,keytype> htab;
htab tab;
for(size_t i = 1; i < keys.size(); i++)
{
keytype & k1 = keys[i];
hashtype h = hash(&k1,sizeof(keytype),0);
typename htab::iterator it = tab.find(h);
if(it != tab.end())
{
keytype & k2 = (*it).second;
printf("A: ");
printbits(&k1,sizeof(keytype));
printf("B: ");
printbits(&k2,sizeof(keytype));
}
else
{
tab.insert( std::make_pair(h,k1) );
}
}
return collcount;
}
//----------------------------------------------------------------------------
// Measure the distribution "score" for each possible N-bit span up to 20 bits
template< typename hashtype >
double TestDistribution ( std::vector<hashtype> & hashes, bool drawDiagram )
{
printf("Testing distribution - ");
if(drawDiagram) printf("\n");
const int hashbits = sizeof(hashtype) * 8;
int maxwidth = 20;
// We need at least 5 keys per bin to reliably test distribution biases
// down to 1%, so don't bother to test sparser distributions than that
while(double(hashes.size()) / double(1 << maxwidth) < 5.0)
{
maxwidth--;
}
std::vector<int> bins;
bins.resize(1 << maxwidth);
double worst = 0;
int worstStart = -1;
int worstWidth = -1;
for(int start = 0; start < hashbits; start++)
{
int width = maxwidth;
int bincount = (1 << width);
memset(&bins[0],0,sizeof(int)*bincount);
for(size_t j = 0; j < hashes.size(); j++)
{
hashtype & hash = hashes[j];
uint32_t index = window(&hash,sizeof(hash),start,width);
bins[index]++;
}
// Test the distribution, then fold the bins in half,
// repeat until we're down to 256 bins
if(drawDiagram) printf("[");
while(bincount >= 256)
{
double n = calcScore(&bins[0],bincount,(int)hashes.size());
if(drawDiagram) plot(n);
if(n > worst)
{
worst = n;
worstStart = start;
worstWidth = width;
}
width--;
bincount /= 2;
if(width < 8) break;
for(int i = 0; i < bincount; i++)
{
bins[i] += bins[i+bincount];
}
}
if(drawDiagram) printf("]\n");
}
double pct = worst * 100.0;
printf("Worst bias is the %3d-bit window at bit %3d - %5.3f%%",worstWidth,worstStart,pct);
if(pct >= 1.0) printf(" !!!!! ");
printf("\n");
return worst;
}
//----------------------------------------------------------------------------
template < typename hashtype >
bool TestHashList ( std::vector<hashtype> & hashes, std::vector<hashtype> & collisions, bool testDist, bool drawDiagram )
{
bool result = true;
{
size_t count = hashes.size();
double expected = (double(count) * double(count-1)) / pow(2.0,double(sizeof(hashtype) * 8 + 1));
printf("Testing collisions - Expected %8.2f, ",expected);
double collcount = 0;
HashSet<hashtype> collisions;
collcount = FindCollisions(hashes,collisions,1000);
printf("actual %8.2f (%5.2fx)",collcount, collcount / expected);
if(sizeof(hashtype) == sizeof(uint32_t))
{
// 2x expected collisions = fail
// #TODO - collision failure cutoff needs to be expressed as a standard deviation instead
// of a scale factor, otherwise we fail erroneously if there are a small expected number
// of collisions
if(double(collcount) / double(expected) > 2.0)
{
printf(" !!!!! ");
result = false;
}
}
else
{
// For all hashes larger than 32 bits, _any_ collisions are a failure.
if(collcount > 0)
{
printf(" !!!!! ");
result = false;
}
}
printf("\n");
}
//----------
if(testDist)
{
TestDistribution(hashes,drawDiagram);
}
return result;
}
//----------
template < typename hashtype >
bool TestHashList ( std::vector<hashtype> & hashes, bool /*testColl*/, bool testDist, bool drawDiagram )
{
std::vector<hashtype> collisions;
return TestHashList(hashes,collisions,testDist,drawDiagram);
}
//-----------------------------------------------------------------------------
template < class keytype, typename hashtype >
bool TestKeyList ( hashfunc<hashtype> hash, std::vector<keytype> & keys, bool testColl, bool testDist, bool drawDiagram )
{
int keycount = (int)keys.size();
std::vector<hashtype> hashes;
hashes.resize(keycount);
printf("Hashing");
for(int i = 0; i < keycount; i++)
{
if(i % (keycount / 10) == 0) printf(".");
keytype & k = keys[i];
hash(&k,sizeof(k),0,&hashes[i]);
}
printf("\n");
bool result = TestHashList(hashes,testColl,testDist,drawDiagram);
printf("\n");
return result;
}
//-----------------------------------------------------------------------------
// Bytepair test - generate 16-bit indices from all possible non-overlapping
// 8-bit sections of the hash value, check distribution on all of them.
// This is a very good test for catching weak intercorrelations between bits -
// much harder to pass than the normal distribution test. However, it doesn't
// really model the normal usage of hash functions in hash table lookup, so
// I'm not sure it's that useful (and hash functions that fail this test but
// pass the normal distribution test still work well in practice)
template < typename hashtype >
double TestDistributionBytepairs ( std::vector<hashtype> & hashes, bool drawDiagram )
{
const int nbytes = sizeof(hashtype);
const int hashbits = nbytes * 8;
const int nbins = 65536;
std::vector<int> bins(nbins,0);
double worst = 0;
for(int a = 0; a < hashbits; a++)
{
if(drawDiagram) if((a % 8 == 0) && (a > 0)) printf("\n");
if(drawDiagram) printf("[");
for(int b = 0; b < hashbits; b++)
{
if(drawDiagram) if((b % 8 == 0) && (b > 0)) printf(" ");
bins.clear();
bins.resize(nbins,0);
for(size_t i = 0; i < hashes.size(); i++)
{
hashtype & hash = hashes[i];
uint32_t pa = window(&hash,sizeof(hash),a,8);
uint32_t pb = window(&hash,sizeof(hash),b,8);
bins[pa | (pb << 8)]++;
}
double s = calcScore(bins,bins.size(),hashes.size());
if(drawDiagram) plot(s);
if(s > worst)
{
worst = s;
}
}
if(drawDiagram) printf("]\n");
}
return worst;
}
//-----------------------------------------------------------------------------
// Simplified test - only check 64k distributions, and only on byte boundaries
template < typename hashtype >
void TestDistributionFast ( std::vector<hashtype> & hashes, double & dworst, double & davg )
{
const int hashbits = sizeof(hashtype) * 8;
const int nbins = 65536;
std::vector<int> bins(nbins,0);
dworst = -1.0e90;
davg = 0;
for(int start = 0; start < hashbits; start += 8)
{
bins.clear();
bins.resize(nbins,0);
for(size_t j = 0; j < hashes.size(); j++)
{
hashtype & hash = hashes[j];
uint32_t index = window(&hash,sizeof(hash),start,16);
bins[index]++;
}
double n = calcScore(&bins.front(),(int)bins.size(),(int)hashes.size());
davg += n;
if(n > dworst) dworst = n;
}
davg /= double(hashbits/8);
}
//-----------------------------------------------------------------------------