forked from asteroid-team/asteroid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.sh
executable file
·143 lines (122 loc) · 4.27 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/bin/bash
# Exit on error
set -e
set -o pipefail
# Main storage directory. You'll need disk space to dump the WHAM mixtures and the wsj0 wav
# files if you start from sphere files.
storage_dir=
# If you start from the sphere files, specify the path to the directory and start from stage 0
sphere_dir= # Directory containing sphere files
# If you already have wsj0 wav files, specify the path to the directory here and start from stage 1
wsj0_wav_dir=
# If you already have the WHAM mixtures, specify the path to the directory here and start from stage 2
wham_wav_dir=
# After running the recipe a first time, you can run it from stage 3 directly to train new models.
# Path to the python you'll use for the experiment. Defaults to the current python
# You can run ./utils/prepare_python_env.sh to create a suitable python environment, paste the output here.
python_path=python
# Example usage
# ./run.sh --stage 3 --tag my_tag --task sep_noisy --id 0,1
# General
stage=0 # Controls from which stage to start
tag="" # Controls the directory name associated to the experiment
# You can ask for several GPUs using id (passed to CUDA_VISIBLE_DEVICES)
id=$CUDA_VISIBLE_DEVICES
# Data
data_dir=data # Local data directory (No disk space needed)
task=sep_clean # Specify the task here (sep_clean, sep_noisy, enh_single, enh_both)
sample_rate=8000
mode=min
# Training parameters separately for optimizing the filterbank and
# the separator, respectively in a two-step process.
# If a filterbank exists and is pretrained then reuse it.
reuse_pretrained_filterbank=True
filterbank_n_basis=128
filterbank_kernel_size=21
# Training
f_batch_size=64
s_batch_size=4
f_num_workers=4
s_num_workers=4
f_optimizer=adam
s_optimizer=adam
f_lr=0.0005
s_lr=0.001
f_epochs=500
s_epochs=400
# Architecture
n_blocks=8
n_repeats=4
# Evaluation
eval_use_gpu=0
. utils/parse_options.sh
sr_string=$(($sample_rate/1000))
suffix=wav${sr_string}k/$mode
dumpdir=$data_dir/$suffix # directory to put generated json file
train_dir=$dumpdir/tr
valid_dir=$dumpdir/cv
test_dir=$dumpdir/tt
if [[ $stage -le 0 ]]; then
echo "Stage 0: Converting sphere files to wav files"
. local/convert_sphere2wav.sh --sphere_dir $sphere_dir --wav_dir $wsj0_wav_dir
fi
if [[ $stage -le 1 ]]; then
echo "Stage 1: Generating 8k and 16k WHAM dataset"
. local/prepare_data.sh --wav_dir $wsj0_wav_dir --out_dir $wham_wav_dir --python_path $python_path
fi
if [[ $stage -le 2 ]]; then
# Make json directories with min/max modes and sampling rates
echo "Stage 2: Generating json files including wav path and duration"
for sr_string in 8 16; do
for mode_option in min max; do
tmp_dumpdir=data/wav${sr_string}k/$mode_option
echo "Generating json files in $tmp_dumpdir"
[[ ! -d $tmp_dumpdir ]] && mkdir -p $tmp_dumpdir
local_wham_dir=$wham_wav_dir/wav${sr_string}k/$mode_option/
$python_path local/preprocess_wham.py --in_dir $local_wham_dir --out_dir $tmp_dumpdir
done
done
fi
# Generate a random ID for the run if no tag is specified
uuid=$($python_path -c 'import uuid, sys; print(str(uuid.uuid4())[:8])')
if [[ -z ${tag} ]]; then
tag=${task}_${sr_string}k${mode}_${uuid}
fi
expdir=exp/train_twostep_${tag}
mkdir -p $expdir
echo "Results from the following experiment will be stored in $expdir"
if [[ $stage -le 3 ]]; then
echo "Stage 3: Training"
mkdir -p logs
CUDA_VISIBLE_DEVICES=$id $python_path train.py \
--train_dir $train_dir \
--valid_dir $valid_dir \
--task $task \
--sample_rate $sample_rate \
--f_lr $f_lr \
--s_lr $s_lr \
--f_epochs $f_epochs \
--s_epochs $s_epochs \
--f_optimizer $f_optimizer \
--s_optimizer $s_optimizer \
--f_batch_size $f_batch_size \
--s_batch_size $s_batch_size \
--f_num_workers $f_num_workers \
--s_num_workers $s_num_workers \
--n_blocks $n_blocks \
--n_repeats $n_repeats \
--n_filters $filterbank_n_basis \
--kernel_size $filterbank_kernel_size \
--reuse_pretrained_filterbank $reuse_pretrained_filterbank \
--exp_dir ${expdir}/ | tee logs/train_${tag}.log
cp logs/train_${tag}.log $expdir/train.log
fi
if [[ $stage -le 4 ]]; then
echo "Stage 4 : Evaluation"
CUDA_VISIBLE_DEVICES=$id $python_path eval.py \
--task $task \
--test_dir $test_dir \
--use_gpu $eval_use_gpu \
--exp_dir ${expdir} | tee logs/eval_${tag}.log
cp logs/eval_${tag}.log $expdir/eval.log
fi