-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaze.py
171 lines (136 loc) · 5.62 KB
/
maze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import random
from graphics import Window
from cell import Cell
from time import sleep
class Maze:
def __init__(self, x1, y1, num_rows, num_cols, cell_size_x, cell_size_y, win: Window = None, seed = None) -> None:
self._cells = []
self._x1 = x1
self._y1 = y1
self._num_rows = num_rows
self._num_cols = num_cols
self._cell_size_x = cell_size_x
self._cell_size_y = cell_size_y
self._win = win
if seed:
random.seed(seed)
self._create_cells()
self._break_entrance_and_exit()
self._break_walls_r(0, 0)
self._reset_cells_visited()
def _create_cells(self):
for _ in range(self._num_cols):
col_cells = []
for _ in range(self._num_rows):
col_cells.append(Cell(self._win))
self._cells.append(col_cells)
for i in range(self._num_cols):
for j in range(self._num_rows):
self._draw_cell(i, j)
def _draw_cell(self, i, j):
if self._win is None:
return
x1 = self._x1 + i * self._cell_size_x
y1 = self._y1 + j * self._cell_size_y
x2 = x1 + self._cell_size_x
y2 = y1 + self._cell_size_y
self._cells[i][j].draw(x1, y1, x2, y2)
self._animate()
def _animate(self):
if self._win is None:
return
self._win.redraw()
sleep(0.05)
def _break_entrance_and_exit(self):
self._cells[0][0].has_top_wall = False
self._draw_cell(0,0)
self._cells[self._num_cols - 1][self._num_rows - 1].has_bottom_wall = False
self._draw_cell(self._num_cols - 1, self._num_rows - 1)
def _break_walls_r(self, i, j):
self._cells[i][j].visited = True
while True:
next_index_list = []
possible_direction_indexes = 0
# Decide which cells to visit next
# Left
if i > 0 and not self._cells[i-1][j].visited:
next_index_list.append((i-1, j))
possible_direction_indexes += 1
# Right
if i < self._num_cols - 1 and not self._cells[i+1][j].visited:
next_index_list.append((i+1, j))
possible_direction_indexes += 1
# Up
if j > 0 and not self._cells[i][j-1].visited:
next_index_list.append((i, j-1))
possible_direction_indexes += 1
# Down
if j < self._num_rows - 1 and not self._cells[i][j+1].visited:
next_index_list.append((i, j+1))
possible_direction_indexes += 1
# Break if no possible directions
if possible_direction_indexes == 0:
self._draw_cell(i, j)
return
# Randomly select a direction to visit
direction_index = random.randrange(possible_direction_indexes)
next_index = next_index_list[direction_index]
# Right
if next_index[0] == i+1:
self._cells[i][j].has_right_wall = False
self._cells[i+1][j].has_left_wall = False
# Left
if next_index[0] == i-1:
self._cells[i][j].has_left_wall = False
self._cells[i-1][j].has_right_wall = False
# Up
if next_index[1] == j-1:
self._cells[i][j].has_top_wall = False
self._cells[i][j-1].has_bottom_wall = False
# Down
if next_index[1] == j+1:
self._cells[i][j].has_bottom_wall = False
self._cells[i][j+1].has_top_wall = False
# Recursive visit to the next cell
self._break_walls_r(next_index[0], next_index[1])
def _reset_cells_visited(self):
for col in self._cells:
for cell in col:
cell.visited = False
def _solve_r(self, i, j):
self._animate()
self._cells[i][j].visited = True
if i == self._num_cols - 1 and j == self._num_rows - 1:
return True
# Determine the direction
# left
if (i > 0 and not self._cells[i-1][j].visited and not self._cells[i][j].has_left_wall):
self._cells[i][j].draw_move(self._cells[i-1][j])
if self._solve_r(i-1, j):
return True
else:
self._cells[i][j].draw_move(self._cells[i-1][j], True)
# right
if (i < self._num_cols - 1 and not self._cells[i+1][j].visited and not self._cells[i][j].has_right_wall):
self._cells[i][j].draw_move(self._cells[i+1][j])
if self._solve_r(i+1, j):
return True
else:
self._cells[i][j].draw_move(self._cells[i+1][j], True)
# up
if (j > 0 and not self._cells[i][j-1].visited and not self._cells[i][j].has_top_wall):
self._cells[i][j].draw_move(self._cells[i][j-1])
if self._solve_r(i, j-1):
return True
else:
self._cells[i][j].draw_move(self._cells[i][j-1], True)
# down
if (j < self._num_rows - 1 and not self._cells[i][j+1].visited and not self._cells[i][j].has_bottom_wall):
self._cells[i][j].draw_move(self._cells[i][j+1])
if self._solve_r(i, j+1):
return True
else:
self._cells[i][j].draw_move(self._cells[i][j+1], True)
return False
def solve(self):
return self._solve_r(0,0)