Given a binary array nums
and an integer goal
, return the number of non-empty subarrays with a sum goal
.
A subarray is a contiguous part of the array.
Example 1:
Input: nums = [1,0,1,0,1], goal = 2 Output: 4 Explanation: The 4 subarrays are bolded and underlined below: [1,0,1,0,1] [1,0,1,0,1] [1,0,1,0,1] [1,0,1,0,1]
Example 2:
Input: nums = [0,0,0,0,0], goal = 0 Output: 15
Constraints:
<li><code>1 <= nums.length <= 3 * 10<sup>4</sup></code></li>
<li><code>nums[i]</code> is either <code>0</code> or <code>1</code>.</li>
<li><code>0 <= goal <= nums.length</code></li>
class Solution:
def numSubarraysWithSum(self, nums: List[int], goal: int) -> int:
counter = Counter({0: 1})
s = ans = 0
for num in nums:
s += num
ans += counter[s - goal]
counter[s] += 1
return ans
class Solution:
def numSubarraysWithSum(self, nums: List[int], goal: int) -> int:
i1 = i2 = s1 = s2 = j = ans = 0
n = len(nums)
while j < n:
s1 += nums[j]
s2 += nums[j]
while i1 <= j and s1 > goal:
s1 -= nums[i1]
i1 += 1
while i2 <= j and s2 >= goal:
s2 -= nums[i2]
i2 += 1
ans += i2 - i1
j += 1
return ans
class Solution {
public int numSubarraysWithSum(int[] nums, int goal) {
int[] counter = new int[nums.length + 1];
counter[0] = 1;
int s = 0, ans = 0;
for (int num : nums) {
s += num;
if (s >= goal) {
ans += counter[s - goal];
}
++counter[s];
}
return ans;
}
}
class Solution {
public int numSubarraysWithSum(int[] nums, int goal) {
int i1 = 0, i2 = 0, s1 = 0, s2 = 0, j = 0, ans = 0;
int n = nums.length;
while (j < n) {
s1 += nums[j];
s2 += nums[j];
while (i1 <= j && s1 > goal) {
s1 -= nums[i1++];
}
while (i2 <= j && s2 >= goal) {
s2 -= nums[i2++];
}
ans += i2 - i1;
++j;
}
return ans;
}
}
class Solution {
public:
int numSubarraysWithSum(vector<int>& nums, int goal) {
vector<int> counter(nums.size() + 1);
counter[0] = 1;
int s = 0, ans = 0;
for (int& num : nums) {
s += num;
if (s >= goal) ans += counter[s - goal];
++counter[s];
}
return ans;
}
};
class Solution {
public:
int numSubarraysWithSum(vector<int>& nums, int goal) {
int i1 = 0, i2 = 0, s1 = 0, s2 = 0, j = 0, ans = 0;
int n = nums.size();
while (j < n)
{
s1 += nums[j];
s2 += nums[j];
while (i1 <= j && s1 > goal) s1 -= nums[i1++];
while (i2 <= j && s2 >= goal) s2 -= nums[i2++];
ans += i2 - i1;
++j;
}
return ans;
}
};
func numSubarraysWithSum(nums []int, goal int) int {
counter := make([]int, len(nums)+1)
counter[0] = 1
s, ans := 0, 0
for _, num := range nums {
s += num
if s >= goal {
ans += counter[s-goal]
}
counter[s]++
}
return ans
}
func numSubarraysWithSum(nums []int, goal int) int {
i1, i2, s1, s2, j, ans, n := 0, 0, 0, 0, 0, 0, len(nums)
for j < n {
s1 += nums[j]
s2 += nums[j]
for i1 <= j && s1 > goal {
s1 -= nums[i1]
i1++
}
for i2 <= j && s2 >= goal {
s2 -= nums[i2]
i2++
}
ans += i2 - i1
j++
}
return ans
}
/**
* @param {number[]} nums
* @param {number} goal
* @return {number}
*/
var numSubarraysWithSum = function (nums, goal) {
let i1 = 0,
i2 = 0,
s1 = 0,
s2 = 0,
j = 0,
ans = 0;
const n = nums.length;
while (j < n) {
s1 += nums[j];
s2 += nums[j];
while (i1 <= j && s1 > goal) s1 -= nums[i1++];
while (i2 <= j && s2 >= goal) s2 -= nums[i2++];
ans += i2 - i1;
++j;
}
return ans;
};