Skip to content

Latest commit

 

History

History
277 lines (235 loc) · 8.89 KB

File metadata and controls

277 lines (235 loc) · 8.89 KB

English Version

题目描述

给定一个 m x n 二进制数组表示的网格 grid ,一个岛屿由 四连通 (上、下、左、右四个方向)的 1 组成(代表陆地)。你可以认为网格的四周被海水包围。

如果两个岛屿的形状相同,或者通过旋转(顺时针旋转 90°,180°,270°)、翻转(左右翻转、上下翻转)后形状相同,那么就认为这两个岛屿是相同的。

返回 这个网格中形状 不同 的岛屿的数量 

 

示例 1:

输入: grid = [[1,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,1]]
输出: 1
解释: 这两个是相同的岛屿。因为我们通过 180° 旋转第一个岛屿,两个岛屿的形状相同。

示例 2:

输入: grid = [[1,1,0,0,0],[1,1,0,0,0],[0,0,0,1,1],[0,0,0,1,1]]
输出: 1

 

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • grid[i][j] 不是 0 就是 1.

解法

先利用 DFS 找出每个岛屿,随后对岛屿进行翻转、旋转等操作,得到以下 8 种不同的情况,并对这些情况进行标准化 normalize 处理,得到该岛屿的特征值,放到哈希表中。最后返回哈希表的元素数量即可。

原坐标: (i, j)
上下翻转: (i, -j)
左右翻转: (-i, j)
90°旋转: (j, -i)
180°旋转: (-i, -j)
270°旋转: (-j, -i)
90°旋转+左右翻转: (-j, -i)
90°旋转+上下翻转: (j, i)

标准化 normalize 的思路是:对于岛屿的每一种情况,先按照横、纵坐标升序排列坐标点,得到的第一个点 (a, b) 是最小的点,将其化为 (0, 0),对于其他点 (x, y),则化为 (x - a, y - b)。然后排序这 8 种情况,获取最小的一种,作为该岛屿的标准化值。

Python3

class Solution:
    def numDistinctIslands2(self, grid: List[List[int]]) -> int:
        def dfs(i, j, shape):
            shape.append([i, j])
            grid[i][j] = 0
            for a, b in [[1, 0], [-1, 0], [0, 1], [0, -1]]:
                x, y = i + a, j + b
                if 0 <= x < m and 0 <= y < n and grid[x][y] == 1:
                    dfs(x, y, shape)

        def normalize(shape):
            shapes = [[] for _ in range(8)]
            for i, j in shape:
                shapes[0].append([i, j])
                shapes[1].append([i, -j])
                shapes[2].append([-i, j])
                shapes[3].append([-i, -j])
                shapes[4].append([j, i])
                shapes[5].append([j, -i])
                shapes[6].append([-j, i])
                shapes[7].append([-j, -i])
            for e in shapes:
                e.sort()
                for i in range(len(e) - 1, -1, -1):
                    e[i][0] -= e[0][0]
                    e[i][1] -= e[0][1]
            shapes.sort()
            return tuple(tuple(e) for e in shapes[0])

        m, n = len(grid), len(grid[0])
        s = set()
        for i in range(m):
            for j in range(n):
                if grid[i][j]:
                    shape = []
                    dfs(i, j, shape)
                    s.add(normalize(shape))
        return len(s)

Java

class Solution {
    private int m;
    private int n;
    private int[][] grid;

    public int numDistinctIslands2(int[][] grid) {
        m = grid.length;
        n = grid[0].length;
        this.grid = grid;
        Set<List<List<Integer>>> s = new HashSet<>();
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    List<Integer> shape = new ArrayList<>();
                    dfs(i, j, shape);
                    s.add(normalize(shape));
                }
            }
        }
        return s.size();
    }

    private List<List<Integer>> normalize(List<Integer> shape) {
        List<int[]>[] shapes = new List[8];
        for (int i = 0; i < 8; ++i) {
            shapes[i] = new ArrayList<>();
        }
        for (int e : shape) {
            int i = e / n;
            int j = e % n;
            shapes[0].add(new int[] {i, j});
            shapes[1].add(new int[] {i, -j});
            shapes[2].add(new int[] {-i, j});
            shapes[3].add(new int[] {-i, -j});
            shapes[4].add(new int[] {j, i});
            shapes[5].add(new int[] {j, -i});
            shapes[6].add(new int[] {-j, i});
            shapes[7].add(new int[] {-j, -i});
        }
        for (List<int[]> e : shapes) {
            e.sort((a, b) -> {
                int i1 = a[0];
                int j1 = a[1];
                int i2 = b[0];
                int j2 = b[1];
                if (i1 == i2) {
                    return j1 - j2;
                }
                return i1 - i2;
            });
            int a = e.get(0)[0];
            int b = e.get(0)[1];
            for (int k = e.size() - 1; k >= 0; --k) {
                int i = e.get(k)[0];
                int j = e.get(k)[1];
                e.set(k, new int[] {i - a, j - b});
            }
        }
        Arrays.sort(shapes, (a, b) -> {
            for (int k = 0; k < a.size(); ++k) {
                int i1 = a.get(k)[0];
                int j1 = a.get(k)[1];
                int i2 = b.get(k)[0];
                int j2 = b.get(k)[1];
                if (i1 != i2) {
                    return i1 - i2;
                }
                if (j1 != j2) {
                    return j1 - j2;
                }
            }
            return 0;
        });
        List<List<Integer>> ans = new ArrayList<>();
        for (int[] e : shapes[0]) {
            ans.add(Arrays.asList(e[0], e[1]));
        }
        return ans;
    }

    private void dfs(int i, int j, List<Integer> shape) {
        shape.add(i * n + j);
        grid[i][j] = 0;
        int[] dirs = {-1, 0, 1, 0, -1};
        for (int k = 0; k < 4; ++k) {
            int x = i + dirs[k];
            int y = j + dirs[k + 1];
            if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
                dfs(x, y, shape);
            }
        }
    }
}

C++

typedef pair<int, int> PII;

class Solution {
public:
    int numDistinctIslands2(vector<vector<int>>& grid) {
        set<vector<PII>> s;
        for (int i = 0; i < grid.size(); ++i) {
            for (int j = 0; j < grid[0].size(); ++j) {
                if (grid[i][j]) {
                    vector<PII> shape;
                    dfs(i, j, grid, shape);
                    s.insert(normalize(shape));
                }
            }
        }
        return s.size();
    }

    vector<PII> normalize(vector<PII>& shape) {
        vector<vector<PII>> shapes(8);
        for (auto& e : shape) {
            int i = e.first, j = e.second;
            shapes[0].push_back({i, j});
            shapes[1].push_back({i, -j});
            shapes[2].push_back({-i, j});
            shapes[3].push_back({-i, -j});
            shapes[4].push_back({j, i});
            shapes[5].push_back({j, -i});
            shapes[6].push_back({-j, -i});
            shapes[7].push_back({-j, i});
        }
        for (auto& e : shapes) {
            sort(e.begin(), e.end());
            for (int k = e.size() - 1; k >= 0; --k) {
                e[k].first -= e[0].first;
                e[k].second -= e[0].second;
            }
        }
        sort(shapes.begin(), shapes.end());
        return shapes[0];
    }

    void dfs(int i, int j, vector<vector<int>>& grid, vector<PII>& shape) {
        shape.push_back({i, j});
        grid[i][j] = 0;
        vector<int> dirs = {-1, 0, 1, 0, -1};
        for (int k = 0; k < 4; ++k) {
            int x = i + dirs[k], y = j + dirs[k + 1];
            if (x >= 0 && x < grid.size() && y >= 0 && y < grid[0].size() && grid[x][y] == 1)
                dfs(x, y, grid, shape);
        }
    }
};

...