You are given an integer array nums
of length n
where nums
is a permutation of the integers in the range [1, n]
. You are also given a 2D integer array sequences
where sequences[i]
is a subsequence of nums
.
Check if nums
is the shortest possible and the only supersequence. The shortest supersequence is a sequence with the shortest length and has all sequences[i]
as subsequences. There could be multiple valid supersequences for the given array sequences
.
- For example, for
sequences = [[1,2],[1,3]]
, there are two shortest supersequences,[1,2,3]
and[1,3,2]
. - While for
sequences = [[1,2],[1,3],[1,2,3]]
, the only shortest supersequence possible is[1,2,3]
.[1,2,3,4]
is a possible supersequence but not the shortest.
Return true
if nums
is the only shortest supersequence for sequences
, or false
otherwise.
A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [1,2,3], sequences = [[1,2],[1,3]] Output: false Explanation: There are two possible supersequences: [1,2,3] and [1,3,2]. The sequence [1,2] is a subsequence of both: [1,2,3] and [1,3,2]. The sequence [1,3] is a subsequence of both: [1,2,3] and [1,3,2]. Since nums is not the only shortest supersequence, we return false.
Example 2:
Input: nums = [1,2,3], sequences = [[1,2]] Output: false Explanation: The shortest possible supersequence is [1,2]. The sequence [1,2] is a subsequence of it: [1,2]. Since nums is not the shortest supersequence, we return false.
Example 3:
Input: nums = [1,2,3], sequences = [[1,2],[1,3],[2,3]] Output: true Explanation: The shortest possible supersequence is [1,2,3]. The sequence [1,2] is a subsequence of it: [1,2,3]. The sequence [1,3] is a subsequence of it: [1,2,3]. The sequence [2,3] is a subsequence of it: [1,2,3]. Since nums is the only shortest supersequence, we return true.
Constraints:
n == nums.length
1 <= n <= 104
nums
is a permutation of all the integers in the range[1, n]
.1 <= sequences.length <= 104
1 <= sequences[i].length <= 104
1 <= sum(sequences[i].length) <= 105
1 <= sequences[i][j] <= n
- All the arrays of
sequences
are unique. sequences[i]
is a subsequence ofnums
.
class Solution:
def sequenceReconstruction(
self, nums: List[int], sequences: List[List[int]]
) -> bool:
g = defaultdict(list)
indeg = [0] * len(nums)
for seq in sequences:
for a, b in pairwise(seq):
g[a - 1].append(b - 1)
indeg[b - 1] += 1
q = deque([i for i, v in enumerate(indeg) if v == 0])
while q:
if len(q) > 1:
return False
i = q.popleft()
for j in g[i]:
indeg[j] -= 1
if indeg[j] == 0:
q.append(j)
return True
class Solution {
public boolean sequenceReconstruction(int[] nums, List<List<Integer>> sequences) {
int n = nums.length;
int[] indeg = new int[n];
List<Integer>[] g = new List[n];
for (int i = 0; i < n; ++i) {
g[i] = new ArrayList<>();
}
for (var seq : sequences) {
for (int i = 1; i < seq.size(); ++i) {
int a = seq.get(i - 1) - 1, b = seq.get(i) - 1;
g[a].add(b);
indeg[b]++;
}
}
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < n; ++i) {
if (indeg[i] == 0) {
q.offer(i);
}
}
while (!q.isEmpty()) {
if (q.size() > 1) {
return false;
}
int i = q.poll();
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.offer(j);
}
}
}
return true;
}
}
class Solution {
public:
bool sequenceReconstruction(vector<int>& nums, vector<vector<int>>& sequences) {
int n = nums.size();
vector<vector<int>> g(n);
vector<int> indeg(n);
for (auto& seq : sequences) {
for (int i = 1; i < seq.size(); ++i) {
int a = seq[i - 1] - 1, b = seq[i] - 1;
g[a].push_back(b);
++indeg[b];
}
}
queue<int> q;
for (int i = 0; i < n; ++i)
if (indeg[i] == 0) q.push(i);
while (!q.empty()) {
if (q.size() > 1) return false;
int i = q.front();
q.pop();
for (int j : g[i])
if (--indeg[j] == 0) q.push(j);
}
return true;
}
};
func sequenceReconstruction(nums []int, sequences [][]int) bool {
n := len(nums)
g := make([][]int, n)
indeg := make([]int, n)
for _, seq := range sequences {
for i := 1; i < len(seq); i++ {
a, b := seq[i-1]-1, seq[i]-1
g[a] = append(g[a], b)
indeg[b]++
}
}
q := []int{}
for i, v := range indeg {
if v == 0 {
q = append(q, i)
}
}
for len(q) > 0 {
if len(q) > 1 {
return false
}
i := q[0]
q = q[1:]
for _, j := range g[i] {
indeg[j]--
if indeg[j] == 0 {
q = append(q, j)
}
}
}
return true
}