Your task is to calculate ab
mod 1337
where a
is a positive integer and b
is an extremely large positive integer given in the form of an array.
Example 1:
Input: a = 2, b = [3] Output: 8
Example 2:
Input: a = 2, b = [1,0] Output: 1024
Example 3:
Input: a = 1, b = [4,3,3,8,5,2] Output: 1
Constraints:
1 <= a <= 231 - 1
1 <= b.length <= 2000
0 <= b[i] <= 9
b
does not contain leading zeros.
class Solution:
def superPow(self, a: int, b: List[int]) -> int:
MOD = 1337
ans = 1
for e in b[::-1]:
ans = ans * pow(a, e, MOD) % MOD
a = pow(a, 10, MOD)
return ans
class Solution {
private static final int MOD = 1337;
public int superPow(int a, int[] b) {
int ans = 1;
for (int i = b.length - 1; i >= 0; --i) {
ans = (int) ((long) ans * quickPowAndMod(a, b[i]) % MOD);
a = quickPowAndMod(a, 10);
}
return ans;
}
private int quickPowAndMod(int a, int b) {
int ans = 1;
while (b > 0) {
if ((b & 1) == 1) {
ans = (ans * (a % MOD)) % MOD;
}
b >>= 1;
a = (a % MOD) * (a % MOD) % MOD;
}
return ans;
}
}
class Solution {
const int MOD = 1337;
public:
int superPow(int a, vector<int>& b) {
int ans = 1;
for (int i = b.size() - 1; i >= 0; --i) {
ans = (long)ans * quickPowAndMod(a, b[i]) % MOD;
a = quickPowAndMod(a, 10);
}
return ans;
}
int quickPowAndMod(int a, int b) {
int ans = 1;
while (b) {
if (b & 1) {
ans = (ans * (a % MOD)) % MOD;
}
b >>= 1;
a = ((a % MOD) * (a % MOD)) % MOD;
}
return ans;
}
};
const mod = 1337
func superPow(a int, b []int) int {
ans := 1
for i := len(b) - 1; i >= 0; i-- {
ans = ans * quickPowAndMod(a, b[i]) % mod
a = quickPowAndMod(a, 10)
}
return ans
}
func quickPowAndMod(a, b int) int {
ans := 1
for b > 0 {
if b&1 > 0 {
ans = ans * a % mod
}
b >>= 1
a = ((a % mod) * (a % mod)) % mod
}
return ans
}