Write an algorithm to determine if a number n
is happy.
A happy number is a number defined by the following process:
- Starting with any positive integer, replace the number by the sum of the squares of its digits.
- Repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1.
- Those numbers for which this process ends in 1 are happy.
Return true
if n
is a happy number, and false
if not.
Example 1:
Input: n = 19 Output: true Explanation: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1
Example 2:
Input: n = 2 Output: false
Constraints:
1 <= n <= 231 - 1
class Solution:
def isHappy(self, n: int) -> bool:
def get_next(n):
s = 0
while n > 0:
n, digit = divmod(n, 10)
s += digit**2
return s
visited = set()
while n != 1 and n not in visited:
visited.add(n)
n = get_next(n)
return n == 1
class Solution {
public boolean isHappy(int n) {
Set<Integer> visited = new HashSet<>();
while (n != 1 && !visited.contains(n)) {
visited.add(n);
n = getNext(n);
}
return n == 1;
}
private int getNext(int n) {
int s = 0;
while (n > 0) {
int digit = n % 10;
s += digit * digit;
n /= 10;
}
return s;
}
}
class Solution {
public:
bool isHappy(int n) {
auto getNext = [](int n) {
int res = 0;
while (n) {
res += pow(n % 10, 2);
n /= 10;
}
return res;
};
int slow = n;
int fast = getNext(n);
while (slow != fast) {
slow = getNext(slow);
fast = getNext(getNext(fast));
}
return slow == 1;
}
};
function isHappy(n: number): boolean {
const getNext = (n: number) => {
let res = 0;
while (n !== 0) {
res += (n % 10) ** 2;
n = Math.floor(n / 10);
}
return res;
};
let slow = n;
let fast = getNext(n);
while (slow !== fast) {
slow = getNext(slow);
fast = getNext(getNext(fast));
}
return fast === 1;
}
impl Solution {
pub fn is_happy(n: i32) -> bool {
let get_next = |mut n: i32| {
let mut res = 0;
while n != 0 {
res += (n % 10).pow(2);
n /= 10;
}
res
};
let mut slow = n;
let mut fast = get_next(n);
while slow != fast {
slow = get_next(slow);
fast = get_next(get_next(fast));
}
slow == 1
}
}