Skip to content

Latest commit

 

History

History
228 lines (189 loc) · 5.2 KB

README.md

File metadata and controls

228 lines (189 loc) · 5.2 KB

题目描述

我们把只包含质因子 2、3 和 5 的数称作丑数(Ugly Number)。求按从小到大的顺序的第 n 个丑数。

 

示例:

输入: n = 10
输出: 12
解释: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 是前 10 个丑数。

说明:  

  1. 1 是丑数。
  2. n 不超过1690。

注意:本题与主站 264 题相同:https://leetcode.cn/problems/ugly-number-ii/

解法

动态规划法。

定义数组 dp,dp[i - 1] 表示第 i 个丑数,那么第 n 个丑数就是 dp[n - 1]。最小的丑数是 1,所以 dp[0] = 1

定义 3 个指针 p2,p3,p5,表示下一个丑数是当前指针指向的丑数乘以对应的质因数。初始时,三个指针的值都指向 0。

i∈[1,n)dp[i] = min(dp[p2] * 2, dp[p3] * 3, dp[p5] * 5),然后分别比较 dp[i]dp[p2] * 2dp[p3] * 3dp[p5] * 5 是否相等,若是,则对应的指针加 1。

最后返回 dp[n - 1] 即可。

Python3

class Solution:
    def nthUglyNumber(self, n: int) -> int:
        dp = [1] * n
        p2 = p3 = p5 = 0
        for i in range(1, n):
            next2, next3, next5 = dp[p2] * 2, dp[p3] * 3, dp[p5] * 5
            dp[i] = min(next2, next3, next5)
            if dp[i] == next2:
                p2 += 1
            if dp[i] == next3:
                p3 += 1
            if dp[i] == next5:
                p5 += 1
        return dp[n - 1]

Java

class Solution {
    public int nthUglyNumber(int n) {
        int[] dp = new int[n];
        dp[0] = 1;
        int p2 = 0, p3 = 0, p5 = 0;
        for (int i = 1; i < n; ++i) {
            int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
            dp[i] = Math.min(next2, Math.min(next3, next5));
            if (dp[i] == next2) ++p2;
            if (dp[i] == next3) ++p3;
            if (dp[i] == next5) ++p5;
        }
        return dp[n - 1];
    }
}

C++

class Solution {
public:
    int nthUglyNumber(int n) {
        vector<int> dp(n);
        dp[0] = 1;
        int p2 = 0, p3 = 0, p5 = 0;
        for (int i = 1; i < n; ++i) {
            int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
            dp[i] = min(next2, min(next3, next5));
            if (dp[i] == next2) ++p2;
            if (dp[i] == next3) ++p3;
            if (dp[i] == next5) ++p5;
        }
        return dp[n - 1];
    }
};

JavaScript

/**
 * @param {number} n
 * @return {number}
 */
var nthUglyNumber = function (n) {
    const dp = [1];
    let p2 = 0,
        p3 = 0,
        p5 = 0;
    for (let i = 1; i < n; ++i) {
        const next2 = dp[p2] * 2,
            next3 = dp[p3] * 3,
            next5 = dp[p5] * 5;
        dp[i] = Math.min(next2, next3, next5);
        if (dp[i] == next2) ++p2;
        if (dp[i] == next3) ++p3;
        if (dp[i] == next5) ++p5;
    }
    return dp[n - 1];
};

Go

func nthUglyNumber(n int) int {
    dp := make([]int, n)
    dp[0] = 1
    p2, p3, p5 := 0, 0, 0
    for i := 1; i < n; i++ {
        next2, next3, next5 := dp[p2]*2, dp[p3]*3, dp[p5]*5
        dp[i] = min(next2, min(next3, next5))
        if dp[i] == next2 {
            p2++
        }
        if dp[i] == next3 {
            p3++
        }
        if dp[i] == next5 {
            p5++
        }
    }
    return dp[n-1]
}

func min(a, b int) int {
    if a < b {
        return a
    }
    return b
}

Rust

impl Solution {
    pub fn nth_ugly_number(n: i32) -> i32 {
        let n = n as usize;
        let mut dp = vec![1; n];
        let mut p2 = 0;
        let mut p3 = 0;
        let mut p5 = 0;
        for i in 1..n {
            let n2 = dp[p2] * 2;
            let n3 = dp[p3] * 3;
            let n5 = dp[p5] * 5;
            dp[i] = n2.min(n3.min(n5));

            if dp[i] == n2 {
                p2 += 1;
            };
            if dp[i] == n3 {
                p3 += 1;
            };
            if dp[i] == n5 {
                p5 += 1;
            };
        }
        dp[n - 1]
    }
}

C#

public class Solution {
    public int NthUglyNumber(int n) {
        if (n < 0) {
            return 0;
        }
        var dp = new int[n];
        dp[0] = 1;
        int p2 = 0, p3 = 0, p5 = 0;
        for (int i=1; i<n; i++) {
            int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
            dp[i] = Math.Min(next2, Math.Min(next3, next5));
            if (dp[i] == next2) {
                p2 += 1;
            }
            if (dp[i] == next3) {
                p3 += 1;
            }
            if (dp[i] == next5) {
                p5 += 1;
            }
        }
        return dp[n - 1];
    }
}

...