给定两个用链表表示的整数,每个节点包含一个数位。
这些数位是反向存放的,也就是个位排在链表首部。
编写函数对这两个整数求和,并用链表形式返回结果。
示例:
输入:(7 -> 1 -> 6) + (5 -> 9 -> 2),即617 + 295 输出:2 -> 1 -> 9,即912
进阶:假设这些数位是正向存放的,请再做一遍。
示例:
输入:(6 -> 1 -> 7) + (2 -> 9 -> 5),即617 + 295 输出:9 -> 1 -> 2,即912
同时遍历两链表,求节点的和与进位。
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode:
dummy = cur = ListNode(0)
carry = 0
while l1 or l2 or carry:
carry += (0 if not l1 else l1.val) + (0 if not l2 else l2.val)
cur.next = ListNode(carry % 10)
cur = cur.next
carry //= 10
l1 = None if not l1 else l1.next
l2 = None if not l2 else l2.next
return dummy.next
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
int carry = 0;
ListNode dummy = new ListNode(-1);
ListNode cur = dummy;
while (l1 != null || l2 != null || carry != 0) {
int s = (l1 == null ? 0 : l1.val) + (l2 == null ? 0 : l2.val) + carry;
carry = s / 10;
cur.next = new ListNode(s % 10);
cur = cur.next;
l1 = l1 == null ? null : l1.next;
l2 = l2 == null ? null : l2.next;
}
return dummy.next;
}
}
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
ListNode* dummy = new ListNode(0);
ListNode* cur = dummy;
int carry = 0;
while (l1 || l2 || carry) {
carry += (!l1 ? 0 : l1->val) + (!l2 ? 0 : l2->val);
cur->next = new ListNode(carry % 10);
cur = cur->next;
carry /= 10;
l1 = l1 ? l1->next : l1;
l2 = l2 ? l2->next : l2;
}
return dummy->next;
}
};
/**
* Definition for singly-linked list.
* function ListNode(val) {
* this.val = val;
* this.next = null;
* }
*/
/**
* @param {ListNode} l1
* @param {ListNode} l2
* @return {ListNode}
*/
var addTwoNumbers = function (l1, l2) {
let carry = 0;
const dummy = new ListNode(0);
let cur = dummy;
while (l1 || l2 || carry) {
carry += (l1?.val || 0) + (l2?.val || 0);
cur.next = new ListNode(carry % 10);
carry = Math.floor(carry / 10);
cur = cur.next;
l1 = l1?.next;
l2 = l2?.next;
}
return dummy.next;
};
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func addTwoNumbers(l1 *ListNode, l2 *ListNode) *ListNode {
dummy := &ListNode{}
cur := dummy
carry := 0
for l1 != nil || l2 != nil || carry > 0 {
if l1 != nil {
carry += l1.Val
l1 = l1.Next
}
if l2 != nil {
carry += l2.Val
l2 = l2.Next
}
cur.Next = &ListNode{Val: carry % 10}
cur = cur.Next
carry /= 10
}
return dummy.Next
}
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function addTwoNumbers(
l1: ListNode | null,
l2: ListNode | null,
): ListNode | null {
if (l1 == null || l2 == null) {
return l1 && l2;
}
const dummy = new ListNode(0);
let cur = dummy;
while (l1 != null || l2 != null) {
let val = 0;
if (l1 != null) {
val += l1.val;
l1 = l1.next;
}
if (l2 != null) {
val += l2.val;
l2 = l2.next;
}
if (cur.val >= 10) {
cur.val %= 10;
val++;
}
cur.next = new ListNode(val);
cur = cur.next;
}
if (cur.val >= 10) {
cur.val %= 10;
cur.next = new ListNode(1);
}
return dummy.next;
}
impl Solution {
pub fn add_two_numbers(
mut l1: Option<Box<ListNode>>,
mut l2: Option<Box<ListNode>>,
) -> Option<Box<ListNode>> {
let mut dummy = Some(Box::new(ListNode::new(0)));
let mut cur = dummy.as_mut();
while l1.is_some() || l2.is_some() {
let mut val = 0;
if let Some(node) = l1 {
val += node.val;
l1 = node.next;
}
if let Some(node) = l2 {
val += node.val;
l2 = node.next;
}
if let Some(node) = cur {
if node.val >= 10 {
val += 1;
node.val %= 10;
}
node.next = Some(Box::new(ListNode::new(val)));
cur = node.next.as_mut();
}
}
if let Some(node) = cur {
if node.val >= 10 {
node.val %= 10;
node.next = Some(Box::new(ListNode::new(1)));
}
}
dummy.unwrap().next
}
}