-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_style_tutorial.py
488 lines (390 loc) · 19 KB
/
neural_style_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
"""
Neural Transfer Using PyTorch
=============================
**Author**: `Alexis Jacq <https://alexis-jacq.github.io>`_
**Edited by**: `Winston Herring <https://github.com/winston6>`_
Introduction
------------
This tutorial explains how to implement the `Neural-Style algorithm <https://arxiv.org/abs/1508.06576>`__
developed by Leon A. Gatys, Alexander S. Ecker and Matthias Bethge.
Neural-Style, or Neural-Transfer, allows you to take an image and
reproduce it with a new artistic style. The algorithm takes three images,
an input image, a content-image, and a style-image, and changes the input
to resemble the content of the content-image and the artistic style of the style-image.
.. figure:: /_static/img/neural-style/neuralstyle.png
:alt: content1
"""
######################################################################
# Underlying Principle
# --------------------
#
# The principle is simple: we define two distances, one for the content
# (:math:`D_C`) and one for the style (:math:`D_S`). :math:`D_C` measures how different the content
# is between two images while :math:`D_S` measures how different the style is
# between two images. Then, we take a third image, the input, and
# transform it to minimize both its content-distance with the
# content-image and its style-distance with the style-image. Now we can
# import the necessary packages and begin the neural transfer.
#
# Importing Packages and Selecting a Device
# -----------------------------------------
# Below is a list of the packages needed to implement the neural transfer.
#
# - ``torch``, ``torch.nn``, ``numpy`` (indispensables packages for
# neural networks with PyTorch)
# - ``torch.optim`` (efficient gradient descents)
# - ``PIL``, ``PIL.Image``, ``matplotlib.pyplot`` (load and display
# images)
# - ``torchvision.transforms`` (transform PIL images into tensors)
# - ``torchvision.models`` (train or load pre-trained models)
# - ``copy`` (to deep copy the models; system package)
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
import streamlit as st
######################################################################
# Next, we need to choose which device to run the network on and import the
# content and style images. Running the neural transfer algorithm on large
# images takes longer and will go much faster when running on a GPU. We can
# use ``torch.cuda.is_available()`` to detect if there is a GPU available.
# Next, we set the ``torch.device`` for use throughout the tutorial. Also the ``.to(device)``
# method is used to move tensors or modules to a desired device.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
######################################################################
# Loading the Images
# ------------------
#
# Now we will import the style and content images. The original PIL images have values between 0 and 255, but when
# transformed into torch tensors, their values are converted to be between
# 0 and 1. The images also need to be resized to have the same dimensions.
# An important detail to note is that neural networks from the
# torch library are trained with tensor values ranging from 0 to 1. If you
# try to feed the networks with 0 to 255 tensor images, then the activated
# feature maps will be unable to sense the intended content and style.
# However, pre-trained networks from the Caffe library are trained with 0
# to 255 tensor images.
#
#
# .. Note::
# Here are links to download the images required to run the tutorial:
# `picasso.jpg <https://pytorch.org/tutorials/_static/img/neural-style/picasso.jpg>`__ and
# `dancing.jpg <https://pytorch.org/tutorials/_static/img/neural-style/dancing.jpg>`__.
# Download these two images and add them to a directory
# with name ``images`` in your current working directory.
# desired size of the output image
imsize = 512 if torch.cuda.is_available() else 128 # use small size if no gpu
loader = transforms.Compose([
transforms.Resize(imsize), # scale imported image
transforms.ToTensor()]) # transform it into a torch tensor
def image_loader(image_name):
image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
style_img = image_loader("./images/NST/picasso.jpg")
content_img = image_loader("./images/NST/dancing.jpg")
assert style_img.size() == content_img.size(), \
"we need to import style and content images of the same size"
######################################################################
# Now, let's create a function that displays an image by reconverting a
# copy of it to PIL format and displaying the copy using
# ``plt.imshow``. We will try displaying the content and style images
# to ensure they were imported correctly.
unloader = transforms.ToPILImage() # reconvert into PIL image
plt.ion()
def imshow(tensor, title=None):
image = tensor.cpu().clone() # we clone the tensor to not do changes on it
image = image.squeeze(0) # remove the fake batch dimension
image = unloader(image)
plt.imshow(image)
if plt.title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
fig1 = plt.figure()
imshow(style_img, title='Style Image')
st.pyplot(fig1)
fig2 = plt.figure()
imshow(content_img, title='Content Image')
st.pyplot(fig2)
######################################################################
# Loss Functions
# --------------
# Content Loss
# ~~~~~~~~~~~~
#
# The content loss is a function that represents a weighted version of the
# content distance for an individual layer. The function takes the feature
# maps :math:`F_{XL}` of a layer :math:`L` in a network processing input :math:`X` and returns the
# weighted content distance :math:`w_{CL}.D_C^L(X,C)` between the image :math:`X` and the
# content image :math:`C`. The feature maps of the content image(:math:`F_{CL}`) must be
# known by the function in order to calculate the content distance. We
# implement this function as a torch module with a constructor that takes
# :math:`F_{CL}` as an input. The distance :math:`\|F_{XL} - F_{CL}\|^2` is the mean square error
# between the two sets of feature maps, and can be computed using ``nn.MSELoss``.
#
# We will add this content loss module directly after the convolution
# layer(s) that are being used to compute the content distance. This way
# each time the network is fed an input image the content losses will be
# computed at the desired layers and because of auto grad, all the
# gradients will be computed. Now, in order to make the content loss layer
# transparent we must define a ``forward`` method that computes the content
# loss and then returns the layer’s input. The computed loss is saved as a
# parameter of the module.
#
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
######################################################################
# .. Note::
# **Important detail**: although this module is named ``ContentLoss``, it
# is not a true PyTorch Loss function. If you want to define your content
# loss as a PyTorch Loss function, you have to create a PyTorch autograd function
# to recompute/implement the gradient manually in the ``backward``
# method.
######################################################################
# Style Loss
# ~~~~~~~~~~
#
# The style loss module is implemented similarly to the content loss
# module. It will act as a transparent layer in a
# network that computes the style loss of that layer. In order to
# calculate the style loss, we need to compute the gram matrix :math:`G_{XL}`. A gram
# matrix is the result of multiplying a given matrix by its transposed
# matrix. In this application the given matrix is a reshaped version of
# the feature maps :math:`F_{XL}` of a layer :math:`L`. :math:`F_{XL}` is reshaped to form :math:`\hat{F}_{XL}`, a :math:`K`\ x\ :math:`N`
# matrix, where :math:`K` is the number of feature maps at layer :math:`L` and :math:`N` is the
# length of any vectorized feature map :math:`F_{XL}^k`. For example, the first line
# of :math:`\hat{F}_{XL}` corresponds to the first vectorized feature map :math:`F_{XL}^1`.
#
# Finally, the gram matrix must be normalized by dividing each element by
# the total number of elements in the matrix. This normalization is to
# counteract the fact that :math:`\hat{F}_{XL}` matrices with a large :math:`N` dimension yield
# larger values in the Gram matrix. These larger values will cause the
# first layers (before pooling layers) to have a larger impact during the
# gradient descent. Style features tend to be in the deeper layers of the
# network so this normalization step is crucial.
#
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
######################################################################
# Now the style loss module looks almost exactly like the content loss
# module. The style distance is also computed using the mean square
# error between :math:`G_{XL}` and :math:`G_{SL}`.
#
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
######################################################################
# Importing the Model
# -------------------
#
# Now we need to import a pre-trained neural network. We will use a 19
# layer VGG network like the one used in the paper.
#
# PyTorch’s implementation of VGG is a module divided into two child
# ``Sequential`` modules: ``features`` (containing convolution and pooling layers),
# and ``classifier`` (containing fully connected layers). We will use the
# ``features`` module because we need the output of the individual
# convolution layers to measure content and style loss. Some layers have
# different behavior during training than evaluation, so we must set the
# network to evaluation mode using ``.eval()``.
#
cnn = models.vgg19(pretrained=True).features.to(device).eval()
######################################################################
# Additionally, VGG networks are trained on images with each channel
# normalized by mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225].
# We will use them to normalize the image before sending it into the network.
#
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
# create a module to normalize input image so we can easily put it in a
# nn.Sequential
class Normalization(nn.Modnule):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
######################################################################
# A ``Sequential`` module contains an ordered list of child modules. For
# instance, ``vgg19.features`` contains a sequence (Conv2d, ReLU, MaxPool2d,
# Conv2d, ReLU…) aligned in the right order of depth. We need to add our
# content loss and style loss layers immediately after the convolution
# layer they are detecting. To do this we must create a new ``Sequential``
# module that has content loss and style loss modules correctly inserted.
#
# desired depth layers to compute style/content losses :
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
# normalization module
normalization = Normalization(normalization_mean, normalization_std).to(device)
# just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
######################################################################
# Next, we select the input image. You can use a copy of the content image
# or white noise.
#
input_img = content_img.clone()
# if you want to use white noise instead uncomment the below line:
# input_img = torch.randn(content_img.data.size(), device=device)
# add the original input image to the figure:
fig3 = plt.figure()
imshow(input_img, title='Input Image')
st.pyplot(fig3)
######################################################################
# Gradient Descent
# ----------------
#
# As Leon Gatys, the author of the algorithm, suggested `here <https://discuss.pytorch.org/t/pytorch-tutorial-for-neural-transfert-of-artistic-style/336/20?u=alexis-jacq>`__, we will use
# L-BFGS algorithm to run our gradient descent. Unlike training a network,
# we want to train the input image in order to minimise the content/style
# losses. We will create a PyTorch L-BFGS optimizer ``optim.LBFGS`` and pass
# our image to it as the tensor to optimize.
#
def get_input_optimizer(input_img):
# this line to show that input is a parameter that requires a gradient
optimizer = optim.LBFGS([input_img])
return optimizer
######################################################################
# Finally, we must define a function that performs the neural transfer. For
# each iteration of the networks, it is fed an updated input and computes
# new losses. We will run the ``backward`` methods of each loss module to
# dynamicaly compute their gradients. The optimizer requires a “closure”
# function, which reevaluates the module and returns the loss.
#
# We still have one final constraint to address. The network may try to
# optimize the input with values that exceed the 0 to 1 tensor range for
# the image. We can address this by correcting the input values to be
# between 0 to 1 each time the network is run.
#
def run_style_transfer(cnn, normalization_mean, normalization_std,
content_img, style_img, input_img, num_steps=300,
style_weight=1000000, content_weight=1):
"""Run the style transfer."""
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn,
normalization_mean, normalization_std, style_img, content_img)
# We want to optimize the input and not the model parameters so we
# update all the requires_grad fields accordingly
input_img.requires_grad_(True)
model.requires_grad_(False)
optimizer = get_input_optimizer(input_img)
print('Optimizing..')
run = [0]
while run[0] <= num_steps:
def closure():
# correct the values of updated input image
with torch.no_grad():
input_img.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
return style_score + content_score
optimizer.step(closure)
# a last correction...
with torch.no_grad():
input_img.clamp_(0, 1)
return input_img
######################################################################
# Finally, we can run the algorithm.
#
output = run_style_transfer(cnn, cnn_normalization_mean, cnn_normalization_std,
content_img, style_img, input_img)
fig4 = plt.figure()
imshow(output, title='Output Image')
st.pyplot(fig4)
# sphinx_gallery_thumbnail_number = 4
plt.ioff()
plt.show()