-
Notifications
You must be signed in to change notification settings - Fork 9
/
generate_distribution.py
486 lines (438 loc) · 25.1 KB
/
generate_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 11 18:28:24 2021
@author: wb305167
"""
import copy
import pandas as pd
import matplotlib.pyplot as plt
import tkinter as tk
from tkinter import ttk
from tkinter import *
import tkinter.font as tkfont
from datetime import datetime
#from taxcalc import *
from taxcalc.utils import *
from taxcalc.display_funcs import *
from PIL import Image,ImageTk
def make_float(item):
if isinstance(item, list):
return [float(x) for x in item]
else:
return float(item)
def read_reform_dict(block_selected_dict):
#print('block_selected_dict in read_reform_dict: ',block_selected_dict)
years=[]
for k in block_selected_dict.keys():
if (block_selected_dict[k]['selected_year'] not in years):
years = years + [block_selected_dict[k]['selected_year'][0]]
ref = {}
ref['policy']={}
#print(' years ', years)
for year in years:
policy_dict = {}
for k in block_selected_dict.keys():
#print('block_selected_dict.keys() ', k)
if block_selected_dict[k]['selected_year'][0]==year:
policy_dict['_'+block_selected_dict[k]['selected_item']]=[make_float(block_selected_dict[k]['selected_value'][0])]
ref['policy'][int(year)] = policy_dict
years = [int(x) for x in years]
years.sort()
return years, ref
def concat_dicts(block_selected_dict, elasticity_dict):
years=[]
max = 0
for k in block_selected_dict.keys():
if int(k) > max:
max = int(k)
for i in range(1,len(elasticity_dict)+1):
block_selected_dict[str(max+i)] = elasticity_dict[str(i)]
#ref = {}
return block_selected_dict
def write_file(df, text_data, filename, window=None, footer_row_num=None):
df.to_csv(filename+'.csv', mode='w')
# a = open(filename+'.csv','w')
# a.write("\n")
# a.write("\n")
# a.close
with open(filename+'.txt','w') as f:
f.write(text_data)
f.close
if (window is not None) and (footer_row_num is not None):
footer = ["footer", "*Data saved in file "+ filename]
display_table(window, data=footer, footer=footer_row_num+2)
def weighted_total_tax(calc, tax_list, category, year, tax_dict, attribute_var = None):
for tax_type in tax_list:
tax_dict[tax_type][year][category] = {}
tax_dict[tax_type][year][category]['value'] = calc.weighted_total_tax_dict(tax_type, tax_type+'ax')
tax_dict[tax_type][year][category]['value_bill'] = {}
tax_dict[tax_type][year][category]['value_bill_str'] = {}
for k in tax_dict[tax_type][year][category]['value'].keys():
tax_dict[tax_type][year][category]['value_bill'][k] = tax_dict[tax_type][year][category]['value'][k]/10**9
tax_dict[tax_type][year][category]['value_bill_str'][k] = '{0:.2f}'.format(tax_dict[tax_type][year][category]['value_bill'][k])
#print('tax_dict ', tax_dict)
return tax_dict
def weighted_total_tax_diff(tax_list, category1, category2, year, tax_dict, attribute_var = None):
for tax_type in tax_list:
tax_dict[tax_type][year][category2]['value_bill_diff'] = {}
tax_dict[tax_type][year][category2]['value_bill_diff_str'] = {}
for k in tax_dict[tax_type][year][category1]['value_bill'].keys():
tax_dict[tax_type][year][category2]['value_bill_diff'][k] = (tax_dict[tax_type][year][category2]['value_bill'][k] -
tax_dict[tax_type][year][category1]['value_bill'][k])
tax_dict[tax_type][year][category2]['value_bill_diff_str'][k] = '{0:.2f}'.format(tax_dict[tax_type][year][category2]['value_bill_diff'][k])
return tax_dict
def screen_print(tax_list, category, year, tax_dict, item, item_desc):
for tax_type in tax_list:
print("The "+tax_type.upper()+" "+item_desc+" in billions is: ", tax_dict[tax_type][year][category][item]['All'])
def generate_policy_revenues():
from taxcalc.growfactors import GrowFactors
from taxcalc.policy import Policy
from taxcalc.records import Records
from taxcalc.gstrecords import GSTRecords
from taxcalc.corprecords import CorpRecords
from taxcalc.parameters import ParametersBase
from taxcalc.calculator import Calculator
from taxcalc.utils import dist_variables
f = open('global_vars.json')
global_vars = json.load(f)
verbose = global_vars['verbose']
start_year = int(global_vars['start_year'])
end_year = int(global_vars['end_year'])
attribute_varlist = global_vars['attribute_vars']
if len(attribute_varlist)==0:
attribute_var = None
else:
attribute_var = attribute_varlist[0]
tax_list=[]
tax_collection_var_list = []
# start the simulation for pit/cit/vat
if global_vars['pit']:
tax_list = tax_list + ['pit']
tax_collection_var_list = tax_collection_var_list + ['pitax']
recs = Records(data=global_vars['pit_data_filename'], weights=global_vars['pit_weights_filename'], gfactors=GrowFactors(growfactors_filename=global_vars['GROWFACTORS_FILENAME']))
else:
recs = None
if global_vars['cit']:
tax_list = tax_list + ['cit']
tax_collection_var_list = tax_collection_var_list + ['citax']
crecs = CorpRecords(data=global_vars['cit_data_filename'], weights=global_vars['cit_weights_filename'], gfactors=GrowFactors(growfactors_filename=global_vars['GROWFACTORS_FILENAME']))
else:
crecs = None
if global_vars['vat']:
tax_list = tax_list + ['vat']
tax_collection_var_list = tax_collection_var_list + ['vatax']
grecs = GSTRecords(data=global_vars['vat_data_filename'], weights=global_vars['vat_weights_filename'], gfactors=GrowFactors(growfactors_filename=global_vars['GROWFACTORS_FILENAME']))
else:
grecs = None
adjust_behavior = 0
for tax_type in tax_list:
adjust_behavior = adjust_behavior or global_vars[tax_type+'_adjust_behavior']
distribution_json_filename = {}
distribution_vardict_dict = {}
income_measure = {}
for tax_type in tax_list:
if global_vars[tax_type+'_distribution_table']:
#CIT_VAR_INFO_FILENAME = 'taxcalc/'+vars['cit_records_variables_filename']
#self.max_lag_years = vars['cit_max_lag_years']
distribution_json_filename[tax_type] = 'taxcalc/'+global_vars[tax_type+'_distribution_json_filename']
f = open(distribution_json_filename[tax_type])
distribution_vardict_dict[tax_type] = json.load(f)
#print('distribution_vardict_dict[tax_type] ', distribution_vardict_dict[tax_type])
income_measure[tax_type] = distribution_vardict_dict[tax_type]['income_measure']
f = open('reform.json')
block_selected_dict = json.load(f)
#print("block_selected_dict from json",block_selected_dict)
# create Policy object containing current-law policy
pol = Policy(DEFAULTS_FILENAME=global_vars['DEFAULTS_FILENAME'])
# specify Calculator objects for current-law policy
calc1 = Calculator(policy=pol, records=recs, corprecords=crecs, gstrecords=grecs, verbose=verbose)
assert isinstance(calc1, Calculator)
assert calc1.current_year == start_year
np.seterr(divide='ignore', invalid='ignore')
pol2 = Policy(DEFAULTS_FILENAME=global_vars['DEFAULTS_FILENAME'])
years, reform=read_reform_dict(block_selected_dict)
pol2.implement_reform(reform['policy'])
calc2 = Calculator(policy=pol2, records=recs, corprecords=crecs, gstrecords=grecs, verbose=verbose)
tax_collection_var = tax_collection_var_list[0]
if adjust_behavior:
elasticity_dict = {}
for tax_type in tax_list:
f = open('taxcalc/'+tax_type+'_elasticity_selection.json')
elasticity_dict[tax_type] = json.load(f)
#print(elasticity_dict)
block_selected_dict = concat_dicts(block_selected_dict, elasticity_dict[tax_type])
#print('block_selected_dict in adjust behavior',block_selected_dict)
pol3 = Policy(DEFAULTS_FILENAME=global_vars['DEFAULTS_FILENAME'])
years, reform=read_reform_dict(block_selected_dict)
#print('reform dict in adjust behavior', reform)
pol3.implement_reform(reform['policy'])
calc3 = Calculator(policy=pol3, records=recs, corprecords=crecs, gstrecords=grecs, verbose=verbose)
#print("block_selected_dict after merging: ", block_selected_dict)
total_revenue_text={}
reform_revenue_text={}
revenue_dict={}
revenue_amount_dict = {}
num = 1
first_time = True
i=1
j=0
#rows = []
window_dict={}
row_num = {}
data_row = {}
l_TAB3 = {}
dt1 = {}
dt2 = {}
dt1_percentile = {}
dt2_percentile = {}
dt = {}
dt_percentile = {}
for tax_type in tax_list:
revenue_dict[tax_type]={}
dt1[tax_type] = {}
dt2[tax_type] = {}
dt1_percentile[tax_type] = {}
dt2_percentile[tax_type] = {}
dt[tax_type] = {}
dt_percentile[tax_type] = {}
for year in range(start_year, end_year+1):
revenue_dict[tax_type][year]={}
window_dict[tax_type] = tk.Toplevel()
window_dict[tax_type].geometry("800x600+600+140")
#display_table(window, header=True)
# Adjust this for number of years selected
header = ["header","Year", "Current Law", "Reform", "Diff"]
if global_vars[tax_type+'_adjust_behavior']:
header = header + ['Reform (Behavior)', "Diff"]
title_header = [["title", tax_type.upper()+" Projections"],
header]
row_num[tax_type] = display_table(window_dict[tax_type], data=title_header, header=True)
for year in range(start_year, end_year+1):
calc1.advance_to_year(year)
calc2.advance_to_year(year)
calc1.calc_all()
calc2.calc_all()
revenue_dict = weighted_total_tax(calc1, tax_list, 'current_law', year, revenue_dict, attribute_var)
if verbose:
print(f'TAX COLLECTION FOR THE YEAR - {year} \n')
screen_print(tax_list, 'current_law', year, revenue_dict, 'value_bill', 'Collection')
revenue_dict = weighted_total_tax(calc2, tax_list, 'reform', year, revenue_dict, attribute_var)
if verbose:
print(f'\nTAX COLLECTION FOR THE YEAR UNDER REFORM - {year} \n')
screen_print(tax_list, 'reform', year, revenue_dict, 'value_bill', 'Collection')
revenue_dict = weighted_total_tax_diff(tax_list, 'current_law', 'reform', year, revenue_dict, attribute_var)
if verbose:
screen_print(tax_list, 'reform', year, revenue_dict, 'value_bill_diff', 'Collection difference under Reform')
for tax_type in tax_list:
data_row[tax_type] = [str(year), revenue_dict[tax_type][year]['current_law']['value_bill_str']['All'],
revenue_dict[tax_type][year]['reform']['value_bill_str']['All'],
revenue_dict[tax_type][year]['reform']['value_bill_diff_str']['All']]
if adjust_behavior:
#redo the calculations by including behavioral adjustment
calc3.advance_to_year(year)
calc3.calc_all()
revenue_dict = weighted_total_tax(calc3, tax_list, 'reform_behavior', year, revenue_dict, attribute_var)
if verbose:
print(f'\nTAX COLLECTION FOR THE YEAR UNDER REFORM WITH BEHAVIOR ADJUSTMENT - {year} \n')
screen_print(tax_list, 'reform_behavior', year, revenue_dict,
'value_bill', 'Collection with Behavioral Adjustment')
revenue_dict = weighted_total_tax_diff(tax_list, 'current_law', 'reform_behavior', year, revenue_dict, attribute_var)
if verbose:
screen_print(tax_list, 'reform_behavior', year, revenue_dict,
'value_bill_diff',
'Collection difference with Behavioral Adjustment')
for tax_type in tax_list:
data_row[tax_type] = data_row[tax_type] + [revenue_dict[tax_type][year]['reform_behavior']['value_bill_str']['All'],
revenue_dict[tax_type][year]['reform_behavior']['value_bill_diff_str']['All']]
for tax_type in tax_list:
row_num[tax_type] = display_table(window_dict[tax_type],
data = data_row[tax_type],
row = row_num[tax_type])
#display_table(window, revenue_dict_pit=revenue_dict_pit, year=year, row=i)
i=i+1
dt1[tax_type][year]={}
dt2[tax_type][year]={}
dt1_percentile[tax_type][year]={}
dt2_percentile[tax_type][year]={}
if global_vars[tax_type+'_distribution_table']:
output_in_averages = True
#output_categories = 'standard_income_bins'
output_categories = 'weighted_deciles'
# pd.options.display.float_format = '{:,.3f}'.format
# dt1, dt2 = calc1.distribution_tables(calc2, 'weighted_deciles')
dt1[tax_type][year], dt2[tax_type][year] = calc1.distribution_tables_dict(tax_type, calc2, output_categories,
distribution_vardict_dict[tax_type], income_measure=income_measure[tax_type],
averages=output_in_averages,
scaling=True, attribute_var=attribute_var)
print('year ', year)
print('dt1 ', dt1[tax_type][year]['All'])
print('dt2 ', dt2[tax_type][year]['All'])
output_categories = 'weighted_percentiles'
dt1_percentile[tax_type][year], dt2_percentile[tax_type][year] = calc1.distribution_tables_dict(tax_type, calc2, output_categories,
distribution_vardict_dict[tax_type], income_measure=income_measure[tax_type],
averages=output_in_averages,
scaling=True, attribute_var=attribute_var)
#print('dt1_percentile[tax_type][year] ', dt1_percentile[tax_type][year])
#print('dt1 ',dt1)
def merge_distribution_table_dicts(dt1, dt2, tax_type, start_year, end_year):
#print('dt1 ',dt1)
#print('dt1[tax_type][start_year] ', dt1[tax_type][start_year])
attribute_types = dt1[tax_type][start_year].keys()
dt = {}
for year in range(start_year, end_year+1):
for attribute_value in attribute_types:
dt1[tax_type][year][attribute_value] = dt1[tax_type][year][attribute_value].rename(columns={tax_collection_var:tax_collection_var+'_'+str(year), income_measure[tax_type]:income_measure[tax_type]+'_'+str(year)})
dt2[tax_type][year][attribute_value] = dt2[tax_type][year][attribute_value].rename(columns={tax_collection_var:tax_collection_var+'_ref_'+str(year), income_measure[tax_type]:income_measure[tax_type]+'_ref_'+str(year)})
#print('dt1 ',dt1)
#print('dt2 ',dt2)
for attribute_value in attribute_types:
dt[attribute_value] = dt1[tax_type][start_year][attribute_value][[tax_collection_var+'_'+str(start_year), income_measure[tax_type]+'_'+str(start_year)]]
for year in range(start_year, end_year+1):
dt[attribute_value]=dt[attribute_value].join(dt2[tax_type][year][attribute_value][[tax_collection_var+'_ref_'+str(year), income_measure[tax_type]+'_ref_'+str(year)]])
return dt
with open('revenue_dict.json', 'w') as f:
json.dump(revenue_dict, f)
#save the results of each tax type in separate files
now = datetime.now() # current date and time
date_time = now.strftime("%d_%m_%Y_%H_%M_%S")
df = {}
# save the results into a csv file
for tax_type in tax_list:
#filename1 = 'Revenue Data_'+'_'+tax_type+'_'+date_time
filename_chart_rev_projection = tax_type+'_revenue_projection'
revenue_dict_df = {}
for k, v in revenue_dict[tax_type].items():
revenue_dict_df[k] = {}
for k1 in revenue_dict[tax_type][year]['current_law']['value'].keys():
revenue_dict_df[k]['current_law_'+k1] = revenue_dict[tax_type][k]['current_law']['value_bill_str'][k1]
revenue_dict_df[k]['reform_'+k1] = revenue_dict[tax_type][k]['reform']['value_bill_str'][k1]
if adjust_behavior:
revenue_dict_df[k]['reform_behavior_'+k1] = revenue_dict[tax_type][k]['reform_behavior']['value_bill_str'][k1]
df[tax_type] = pd.DataFrame.from_dict(revenue_dict_df)
df_str = df[tax_type].to_string()
df_reform = pd.DataFrame.from_dict(reform)
df_reform_str = df_reform.to_string()
text_output1 = df_str + '\n\n' + df_reform_str + '\n\n'
write_file(df[tax_type], text_output1, filename_chart_rev_projection)
last_row = row_num[tax_type]
l_TAB3[tax_type] = tk.Button(window_dict[tax_type],
text="Save Results",
command=lambda: write_file(df[tax_type],
text_output1,
filename_chart_rev_projection,
window_dict[tax_type],
last_row
))
l_TAB3[tax_type].grid(row=row_num[tax_type]+2, column=2, pady = 10, sticky=tk.W)
#footer = ["footer", "*Data saved in file "+ filename1]
#row_num = display_table(window, data=footer, footer=row_num+2)
###### DISTRIBUTION TABLES ##############
window_dist = {}
row_num = {}
dt={}
for tax_type in tax_list:
if global_vars[tax_type+'_distribution_table']:
dt[tax_type] = merge_distribution_table_dicts(dt1, dt2, tax_type, start_year, end_year)
dt_percentile[tax_type] = merge_distribution_table_dicts(dt1_percentile, dt2_percentile, tax_type, start_year, end_year)
#print(dt)
dt[tax_type]['All'].update(dt[tax_type]['All'].select_dtypes(include=np.number).applymap('{:,.0f}'.format))
dt[tax_type]['All'].to_pickle('file.pkl')
dt[tax_type]['All'] = pd.read_pickle('file.pkl')
#dt[tax_type]['All'] = dt[tax_type]['All'].reset_index()
dt_tax_all = dt[tax_type]['All'][dt[tax_type]['All'].columns[dt[tax_type]['All'].columns.str.contains(tax_collection_var)]]
print('dt_tax_all ', dt_tax_all)
dt_tax_all = dt_tax_all.reset_index()
print('dt_tax_all ', dt_tax_all)
#print('dt_percentile ',dt_percentile)
#dt_percentile[tax_type]['All']['ETR'] = max(dt_percentile[tax_type]['All'][tax_collection_var+'_'+str(start_year)]/dt_percentile[tax_type]['All'][income_measure[tax_type]+'_'+str(start_year)], 0)
#dt_percentile[tax_type]['All']['ETR_ref'] = max(dt_percentile[tax_type]['All'][tax_collection_var+'_ref_'+str(start_year)]/dt_percentile[tax_type]['All'][income_measure[tax_type]+'_ref_'+str(start_year)], 0)
dt_percentile[tax_type]['All']['ETR'] = min(max(dt_percentile[tax_type]['All'][tax_collection_var+'_'+str(start_year)]/dt_percentile[tax_type]['All'][income_measure[tax_type]+'_'+str(start_year)], 0), 0.3)
dt_percentile[tax_type]['All']['ETR_ref'] = min(max(dt_percentile[tax_type]['All'][tax_collection_var+'_ref_'+str(start_year)]/dt_percentile[tax_type]['All'][income_measure[tax_type]+'_ref_'+str(start_year)], 0), 0.3)
dt_percentile[tax_type]['All']['ETR'] = dt_percentile[tax_type]['All']['ETR'].fillna(0)
dt_percentile[tax_type]['All']['ETR_ref'] = dt_percentile[tax_type]['All']['ETR_ref'].fillna(0)
dt_percentile[tax_type]['All'].update(dt_percentile[tax_type]['All'].select_dtypes(include=np.number).applymap('{:,.4f}'.format))
#dt = dt.reset_index()
# Adjust this for number of years selected
#now = datetime.now() # current date and time
#date_time = now.strftime("%d_%m_%Y_%H_%M_%S")
filename2 = tax_type+'_distribution_table'
text_output2 = dt[tax_type]['All'].to_string() + '\n\n'
write_file(dt_tax_all, text_output2, filename2)
filename_etr = tax_type+'_etr'
text_output_etr = dt_percentile[tax_type]['All'].to_string() + '\n\n'
write_file(dt_percentile[tax_type]['All'], text_output_etr, filename_etr)
if global_vars[tax_type+'_display_distribution_table']:
window_dist[tax_type] = tk.Toplevel()
window_dist[tax_type].geometry("900x700+600+140")
header1 = ["header","", tax_type.upper()]
header2 = ["header",'Decile','Current Law '+str(start_year)]
for year in range(start_year, end_year+1):
header1 = header1+[tax_type.upper()]
header2 = header2+['Reform '+str(year)]
title_header = [["title", tax_type.upper()+" Distribution"],
header1, header2]
#footer = ["footer", "*Data saved in file datadump.csv"]
row_num[tax_type] = display_table(window_dist[tax_type], data=title_header, header=True)
row_num[tax_type] = display_table(window_dist[tax_type], row = row_num[tax_type], dataframe=dt_tax_all)
l = tk.Button(window_dist[tax_type],text="Save Results",command=lambda: write_file(dt_tax_all, text_output2, filename2, window_dist[tax_type], row_num[tax_type]))
l.grid(row=row_num[tax_type]+2, column=2, pady = 10, sticky=tk.W)
#footer = ["footer", "*Data saved in file "+ filename1]
#row_num = display_table(window_dist, data=footer, footer=row_num+2)
global_vars['charts_ready'] = 1
with open('global_vars.json', 'w') as f:
f.write(json.dumps(global_vars, indent=2))
#pt = Table(f, dataframe=dt,
#showtoolbar=True, showstatusbar=True)
"""
#redo the calculations by including behavioral adjustment
recs = Records(data=vars['pit_data_filename'], weights=vars['pit_weights_filename'], gfactors=GrowFactors(growfactors_filename=vars['GROWFACTORS_FILENAME']))
pol2 = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME'])
years, reform=read_reform_dict(block_selected_dict)
#print("reform dictionary: ",reform)
pol2.implement_reform(reform['policy'])
calc2 = Calculator(policy=pol2, records=recs, verbose=False)
assert isinstance(calc2, Calculator)
assert calc2.current_year == 2017
np.seterr(divide='ignore', invalid='ignore')
for year in range(2019, 2023):
calc2.advance_to_year(year)
calc2.adjust_behavior(first_year=2019)
calc2.calc_all()
weighted_pitax3 = calc2.weighted_total_pit('pitax')
pitax_collection_billions3 = weighted_pitax3/10**9
pitax_collection_str3 = '{0:.2f}'.format(pitax_collection_billions3)
print('\n\n\n')
print(f'TAX COLLECTION FOR THE YEAR UNDER REFORM WITH BEHAVIOR ADJUSTMENT - {year} \n')
print("The PIT Collection in billions is: ", pitax_collection_billions3)
pitax_diff_collection_billions4 = (pitax_collection_billions3-pitax_collection_billions1)
pitax_diff_collection_str4 = '{0:.2f}'.format(pitax_diff_collection_billions4)
#save the results
revenue_dict_pit[year]['reform_behavior']=pitax_collection_str3
revenue_dict_pit[year]['reform_behavior_difference']=pitax_diff_collection_str4
display_table(window, revenue_dict_pit=revenue_dict_pit, year=year, row=i)
i=i+1
display_table(window, footer=i)
"""
"""
#print(revenue_amount_dict)
df_revenue_proj = pd.DataFrame(revenue_amount_dict)
df_revenue_proj = df_revenue_proj.T
df_revenue_proj['Current Law'] = df_revenue_proj['current_law'].apply(pd.Series)
df_revenue_proj['Reform'] = df_revenue_proj['reform'].apply(pd.Series)
df_revenue_proj = df_revenue_proj.drop(['current_law', 'reform'], axis=1)
df_revenue_proj['Current Law'] = pd.to_numeric(df_revenue_proj['Current Law'])
df_revenue_proj['Reform'] = pd.to_numeric(df_revenue_proj['Reform'])
print("Revenues\n", df_revenue_proj)
ax = df_revenue_proj.plot(y=["Current Law", "Reform"], kind="bar", rot=0,
figsize=(8,8))
ax.set_ylabel('(billion )')
ax.set_xlabel('')
ax.set_title('CIT Revenue - Current Law vs. Reforms', fontweight="bold")
pic_filename2 = 'PIT - Current Law and Reforms.png'
plt.savefig(pic_filename2)
img1 = Image.open(pic_filename2)
img2 = img1.resize((500, 500), Image.ANTIALIAS)
img3 = ImageTk.PhotoImage(img2)
pic.configure(image=img3)
pic.image = img3
"""