-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgenerate_revenues.py
266 lines (212 loc) · 10.9 KB
/
generate_revenues.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 11 18:28:24 2021
@author: wb305167
"""
import pandas as pd
import matplotlib.pyplot as plt
import tkinter as tk
from tkinter import ttk
from tkinter import *
import tkinter.font as tkfont
#from taxcalc import *
from taxcalc.utils import *
from PIL import Image,ImageTk
def display_table(window, revenue_dict_cit, revenue_dict_pit, header=None, year=None, row=None, footer=None, all=None):
# Display the results in a popup window
# popup window for the Results but only one time after first
# set of results start coming in
fontStyle_sub_title = tkfont.Font(family="Calibri", size="14", weight="bold")
if header:
i=1
#window = tk.Toplevel()
#window.geometry("800x400+140+140")
tk.Label0 = tk.Label(window, text="")
tk.Label0.grid(row=i, column=0, sticky=tk.NSEW, padx=20)
tk.Label1 = tk.Label(window, text="Tax Collections and Projections", font=fontStyle_sub_title)
tk.Label1.grid(row=i, column=2, columnspan=5)
i=i+1
#mainloop()
l00 = tk.Label(window, text="", padx=20)
l00.grid(row=i, column=0)
l01 = tk.Label(window, text="Year", font=fontStyle_sub_title, relief=RIDGE)
l01.grid(row=i, column=1, sticky=tk.NSEW)
l02 = tk.Label(window, text="Corporate Income Tax (bill.)", font=fontStyle_sub_title,relief=RIDGE)
l02.grid(row=i, column=2, sticky=tk.NSEW)
l03 = tk.Label(window, text="Personal Income Tax (bill.)", font=fontStyle_sub_title,relief=RIDGE)
l03.grid(row=i, column=3, sticky=tk.NSEW)
i=i+1
if row is not None:
i=row+2
l0 = tk.Label(window, text="", padx=20)
l0.grid(row=i, column=0, sticky=tk.NSEW)
l1 = tk.Label(window, text=str(year), font=fontStyle_sub_title, relief=RIDGE)
l1.grid(row=i, column=1, sticky=tk.NSEW)
l2 = tk.Label(window, text=str(revenue_dict_cit[year]['current_law']), font=fontStyle_sub_title, relief=RIDGE)
l2.grid(row=i, column=2, sticky=tk.NSEW)
l3 = tk.Label(window, text=str(revenue_dict_pit[year]['current_law']), font=fontStyle_sub_title, relief=RIDGE)
l3.grid(row=i, column=3, sticky=tk.NSEW)
i=i+1
if footer is not None:
i=footer+3
l4 = tk.Label(window, text="*Data saved in file datadump.csv")
l4.grid(row=i, column=1, pady = 10, columnspan = 3, sticky=tk.W)
def read_reform_dict(block_selected_dict):
years=[]
for k in block_selected_dict.keys():
if (block_selected_dict[k]['selected_year'] not in years):
years = years + [block_selected_dict[k]['selected_year']]
ref = {}
ref['policy']={}
for year in years:
policy_dict = {}
for k in block_selected_dict.keys():
if block_selected_dict[k]['selected_year']==year:
policy_dict['_'+block_selected_dict[k]['selected_item']]=[float(block_selected_dict[k]['selected_value'])]
ref['policy'][int(year)] = policy_dict
years.sort()
years = [int(x) for x in years]
return years, ref
def fact():
print("12345")
f = open('reform.json')
vars = json.load(f)
print("block_selected_dict from json",vars)
print("54321")
def generate_revenues():
from taxcalc.growfactors import GrowFactors
from taxcalc.policy import Policy
from taxcalc.records import Records
from taxcalc.gstrecords import GSTRecords
from taxcalc.corprecords import CorpRecords
from taxcalc.parameters import ParametersBase
from taxcalc.calculator import Calculator
"""
for num in range(1, num_reforms):
block_selected_dict[num]['selected_item']= block_widget_dict[num][1].get()
block_selected_dict[num]['selected_value']= block_widget_dict[num][3].get()
block_selected_dict[num]['selected_year']= block_widget_dict[num][2].get()
print(block_selected_dict)
"""
f = open('reform.json')
block_selected_dict = json.load(f)
print("block_selected_dict from json",block_selected_dict)
#print(block_selected_dict)
# create Records object containing pit.csv and pit_weights.csv input data
#print("growfactors filename ", growfactors_filename)
#recs = Records(data=data_filename, weights=weights_filename, gfactors=GrowFactors(growfactors_filename=growfactors_filename))
#recs = Records(data=data_filename, weights=weights_filename, gfactors=GrowFactors(growfactors_filename=growfactors_filename))
#recs.increment_year1(3.0)
#grecs = GSTRecords()
f = open('global_vars.json')
vars = json.load(f)
print("data_filename: ", vars['cit_data_filename'])
print("weights_filename: ", vars['cit_weights_filename'])
print("growfactors_filename: ", vars['GROWFACTORS_FILENAME'])
print("policy_filename: ", vars['DEFAULTS_FILENAME'])
# create CorpRecords object using cross-section data
#crecs1 = CorpRecords(data='cit_cross.csv', weights='cit_cross_wgts1.csv')
crecs1 = CorpRecords(data=vars['cit_data_filename'], weights=vars['cit_weights_filename'], gfactors=GrowFactors(growfactors_filename=vars['GROWFACTORS_FILENAME']))
#crecs1 = CorpRecords(data=vars['cit_weights_filename'], weights=vars['cit_weights_filename'])
# Note: weights argument is optional
assert isinstance(crecs1, CorpRecords)
assert crecs1.current_year == 2017
# create Policy object containing current-law policy
pol = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME'])
# specify Calculator objects for current-law policy
#calc1 = Calculator(policy=pol, records=recs, corprecords=crecs1,
# gstrecords=grecs, verbose=False)
calc1 = Calculator(policy=pol, corprecords=crecs1, verbose=False)
#calc1.increment_year1(3.8)
assert isinstance(calc1, Calculator)
assert calc1.current_year == 2017
np.seterr(divide='ignore', invalid='ignore')
calc1.calc_all()
revenue_dict_cit={}
for year in range(2019, 2024):
cols = []
calc1.advance_to_year(year)
# NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs,
# so we can continue to use pol and recs in this script without any
# concern about side effects from Calculator method calls on calc1.
# Produce DataFrame of results using the calculator
# First run the calculator for the corporate income tax
calc1.calc_all()
print("***** Year ", year)
weighted_citax1 = calc1.weighted_total_cit('citax')
citax_collection_billions1 = weighted_citax1/10**9
citax_collection_str1 = '{0:.2f}'.format(citax_collection_billions1)
print("The CIT Collection in billions is: ", citax_collection_billions1)
# Store Results
revenue_dict_cit[year]={}
revenue_dict_cit[year]['current_law']=citax_collection_str1
# start a new round of simulation for pit
recs = Records(data=vars['pit_data_filename'], weights=vars['pit_weights_filename'], gfactors=GrowFactors(growfactors_filename=vars['GROWFACTORS_FILENAME']))
# create Policy object containing current-law policy
pol = Policy(DEFAULTS_FILENAME=vars['DEFAULTS_FILENAME'])
# specify Calculator objects for current-law policy
#calc1 = Calculator(policy=pol, records=recs, corprecords=crecs1,
# gstrecords=grecs, verbose=False)
calc1 = Calculator(policy=pol, records=recs, verbose=False)
#calc1.increment_year1(3.8)
assert isinstance(calc1, Calculator)
assert calc1.current_year == 2017
np.seterr(divide='ignore', invalid='ignore')
total_revenue_text={}
reform_revenue_text={}
revenue_dict_pit={}
revenue_amount_dict = {}
num = 1
first_time = True
i=1
j=0
#rows = []
window = tk.Toplevel()
window.geometry("800x400+140+140")
display_table(window, revenue_dict_cit, revenue_dict_pit, header=True)
#for year in range(years[0], years[-1]+1):
for year in range(2019, 2024):
cols = []
calc1.advance_to_year(year)
# NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs,
# so we can continue to use pol and recs in this script without any
# concern about side effects from Calculator method calls on calc1.
# Produce DataFrame of results using the calculator
# First run the calculator for the corporate income tax
calc1.calc_all()
weighted_pitax1 = calc1.weighted_total_pit('pitax')
pitax_collection_billions1 = weighted_pitax1/10**9
pitax_collection_str1 = '{0:.2f}'.format(pitax_collection_billions1)
print('\n\n\n')
print(f'TAX COLLECTION FOR THE YEAR - {year} \n')
print("The PIT Collection in billions is: ", pitax_collection_billions1)
#total_revenue_text[year] = "PIT COLLECTION UNDER CURRENT LAW FOR THE YEAR - " + str(year)+" : "+str(pitax_collection_str1)+" bill"
#save the results
revenue_dict_pit[year]={}
revenue_dict_pit[year]['current_law']=pitax_collection_str1
display_table(window, revenue_dict_cit, revenue_dict_pit, year=year, row=i)
i=i+1
display_table(window, revenue_dict_cit, revenue_dict_pit, footer=i)
"""
#print(revenue_amount_dict)
df_revenue_proj = pd.DataFrame(revenue_amount_dict)
df_revenue_proj = df_revenue_proj.T
df_revenue_proj['Current Law'] = df_revenue_proj['current_law'].apply(pd.Series)
df_revenue_proj['Reform'] = df_revenue_proj['reform'].apply(pd.Series)
df_revenue_proj = df_revenue_proj.drop(['current_law', 'reform'], axis=1)
df_revenue_proj['Current Law'] = pd.to_numeric(df_revenue_proj['Current Law'])
df_revenue_proj['Reform'] = pd.to_numeric(df_revenue_proj['Reform'])
print("Revenues\n", df_revenue_proj)
ax = df_revenue_proj.plot(y=["Current Law", "Reform"], kind="bar", rot=0,
figsize=(8,8))
ax.set_ylabel('(billion )')
ax.set_xlabel('')
ax.set_title('CIT Revenue - Current Law vs. Reforms', fontweight="bold")
pic_filename2 = 'PIT - Current Law and Reforms.png'
plt.savefig(pic_filename2)
img1 = Image.open(pic_filename2)
img2 = img1.resize((500, 500), Image.ANTIALIAS)
img3 = ImageTk.PhotoImage(img2)
pic.configure(image=img3)
pic.image = img3
"""