-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbootCal.m
157 lines (132 loc) · 4.72 KB
/
bootCal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
% |----------------------------------------------------------------------------
% |'bootCal' is a function. It takes a N x 1 input vector ('data.x'), a N x 1
% |target vector ('data.y'), a N x 1 target-uncertainty vector ('u'), the
% |polynomial degree ('M'), the number of bootstrap samples ('B'), and a
% |structure of optional input ('calOpt'). It returns a (M + 1) x 1 parameter
% |vector ('model.mean'), a (M + 1) x (M + 1) parameter covariance matrix
% |('model.cov'), a measure of data noise ('model.noise'), two prediction-
% |uncertainty estimate ('model.REMSE' and 'model.R632', the latter only if
% |calOpt.bootDetail = true), scaling factors ('model.mx' and 'model.sx')
% |employed to tranform 'x' according to x = (x - model.mx) / model.sx, the
% |mean target uncertainty ('model.mu', only if target uncertainties are
% |provided), and the wall time ('model.t') needed for the bootstrap loop.
% |Furthermore, if the number of output arguments is 2 and
% |calOpt.bootDetail = false, all sampled parameter vector will be returned.
% |If additionally calOpt.bootDetail = true, the function will return the set
% |of absent data pairs/triples per bootstrap sample ('full.out', where a 1
% |stands for absent and a 0 for present data pairs/triples), N (M + 1) x 1
% |jackknifed parameter vectors ('full.jack.mean'), N (M + 1) x (M + 1)
% |jackknifed covariance matrices ('full.jack.cov'), and N root-mean-square
% |deviations of the jackknifed samples versus the original sample
% |('full.jack.df').
% |For more details, consult the reBoot manual available at
% |<http://www.reiher.ethz.ch/software/reboot/manual.pdf>.
% |----------------------------------------------------------------------------
function [model full] = bootCal(x,y,u,M,B,calOpt)
%%% input inspection and processing %%%
if size(x,2) > 1
error("first argument must be not be a row vector or a matrix");
end
if ~prod(size(x) == size(y))
error("first and second argument must be of same size");
end
if ~isempty(u)
if ~prod(size(x) == size(u))
if length(u) == 1
u = repmat(u,length(x),1);
else
error("first and third argument must be of same size");
end
elseif ~prod(u > 0)
error("all elements in third argument must be positive");
end
end
if ~exist('B') || isempty(B)
B = 1000;
elseif length(B) ~= 1
error("fifth argument must be a scalar");
elseif (B < 100) || mod(B,1)
error("fifth argument must be an integer that is 100 or larger");
end
if ~exist('calOpt')
calOpt = struct();
end
if ~isfield(calOpt,'xScale')
calOpt.xScale = 1;
elseif length(calOpt.xScale) ~= 1
error("field 'xScale' of sixth argument must be a scalar");
elseif (calOpt.xScale ~= 0) && (calOpt.xScale ~= 1) && (calOpt.xScale ~= 2)
error("field 'xScale' of sixth argument can only take values 0, 1, 2");
end
if ~isfield(calOpt,'bootDetail')
calOpt.bootDetail = 1;
elseif length(calOpt.bootDetail) ~= 1
error("'calOpt.bootDetail' must be a scalar");
end
switch calOpt.xScale
case 0
mx = 0;
sx = 1;
X = add(x,M);
case 1
mx = mean(x);
sx = 1;
X = add(center(x),M);
case 2
mx = mean(x);
sx = std(x);
X = add(zscore(x),M);
end
N = length(x);
if calOpt.bootDetail
count = zeros(N,1);
loo = zeros(N,1);
if nargout == 2
jack = zeros(M+1,B,N);
end
end
warning('off','Octave:broadcast');
%%% actual code starts here %%%
t_init = time();
for b = 1:B
R = randi([1 N],N,1);
full.w(:,b) = X(R,:) \ y(R);
if calOpt.bootDetail
out = ~(sum(repmat(R,1,N) == repmat((1:N),N,1)))';
count += out;
loo(out) += (y(out) - X(out,:) * full.w(:,b)).^2;
if nargout == 2
jack(:,b,out) = ones(M+1,1,sum(out)) .* full.w(:,b);
full.out(:,b) = out;
end
end
printf(">> %d / %d bootstrap samples\r",b,B);
fflush(stdout);
end
t_final = time();
disp("");
MSE = mean((y - X * (X \ y)).^2);
model.mean = mean(full.w,2);
model.cov = cov(full.w');
model.noise = N / (N - M - 1) * MSE;
model.REMSE = sqrt(mean((repmat(y,1,B) - X * full.w)(:).^2));
if calOpt.bootDetail
loo ./= count;
model.R632 = sqrt(.368 * MSE + .632 * mean(loo));
end
model.mx = mx;
model.sx = sx;
if ~isempty(u)
model.mu = sqrt(mean(u.^2));
end
model.t = t_final - t_init;
if (nargout == 2) && calOpt.bootDetail
for n = 1:N
nJack = jack(:,(prod(jack(:,:,n)) ~= 0),n);
full.jack.mean(:,1,n) = mean(nJack,2);
full.jack.cov(:,:,n) = cov(nJack');
full.jack.df(:,1,n) = sum((X * (model.mean - mean(nJack,2))).^2);
end
full.jack.df /= min(full.jack.df);
end
end