-
Notifications
You must be signed in to change notification settings - Fork 0
/
maddpg_agent.py
136 lines (100 loc) · 5.13 KB
/
maddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class ReplayBuffer:
def __init__(self, capacity, obs_dim, state_dim, action_dim, batch_size):
self.capacity = capacity
self.obs_cap = np.empty((self.capacity, obs_dim))
self.next_obs_cap = np.empty((self.capacity, obs_dim))
self.state_cap = np.empty((self.capacity, state_dim))
self.next_state_cap = np.empty((self.capacity, state_dim))
self.action_cap = np.empty((self.capacity, action_dim))
self.reward_cap = np.empty((self.capacity, 1))
self.done_cap = np.empty((self.capacity, 1),dtype=bool)
self.batch_size = batch_size
self.current = 0
def add_memo(self, obs, next_obs, state, next_state, action, reward, done):
self.obs_cap[self.current] = obs
self.next_obs_cap[self.current] = next_obs
self.state_cap[self.current] = state
self.next_state_cap[self.current] = next_state
self.action_cap[self.current] = action
self.reward_cap[self.current] = reward
self.done_cap[self.current] = done
self.current = (self.current + 1) % self.capacity
def sample(self, indxes):
obs = self.obs_cap[indxes]
next_obs = self.next_obs_cap[indxes]
state = self.state_cap[indxes]
next_state = self.next_state_cap[indxes]
action = self.action_cap[indxes]
reward = self.reward_cap[indxes]
done = self.done_cap[indxes]
return obs, next_obs, state, next_state, action, reward, done
class Critic(nn.Module):
def __init__(self, lr_critic, input_dims, fc1_dims, fc2_dims, n_agent,action_dim) :
super(Critic, self).__init__()
self.fcl = nn.Linear(input_dims + n_agent * action_dim, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.q = nn.Linear(fc2_dims, out_features=1)
self.optimizer = torch.optim.Adam(self.parameters(), lr=lr_critic)
def forward(self, state,action):
x = torch.cat([state, action], dim=1)
x = F.relu((self.fcl(x)))
x = F.relu((self.fc2(x)))
q = self.q(x)
return q
def save_checkpoint(self, checkpoint_file):
torch.save(self.state_dict(), checkpoint_file)
def load_checkpoint(self, checkppint_file):
self.load_state_dict(torch.load(checkppint_file))
class Actor(nn.Module):
def __init__(self, lr_actor, input_dims, fc1_dims, fc2_dims, action_dim):
super(Actor, self).__init__()
self.fcl = nn.Linear(input_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.pi = nn.Linear(fc2_dims, action_dim)
self.optimizer = torch.optim.Adam(self.parameters(), lr=lr_actor)
def forward(self, state):
x = F.relu((self.fcl(state)))
x = F.relu((self.fc2(x)))
mu = torch.softmax(self.pi(x),dim=1)
return mu
def save_checkpoint(self, checkpoint_file):
torch.save(self.state_dict(), checkpoint_file)
def load_checkpoint(self, checkppint_file):
self.load_state_dict(torch.load(checkppint_file))
class Agent:
def __init__(self, memo_size, obs_dim, state_dim, n_agent, action_dim,
alpha ,beta, fc1_dims,fc2_dims, gamma, tau, batch_size):
self.gamma = gamma
self.tau = tau
self.action_dim = action_dim
self.actor = Actor(lr_actor=alpha, input_dims=obs_dim, fc1_dims=fc1_dims,
fc2_dims=fc2_dims, action_dim=action_dim).to(device)
self.critic = Critic(lr_critic=beta, input_dims=state_dim, fc1_dims=fc1_dims,
fc2_dims=fc2_dims, n_agent=n_agent, action_dim=action_dim).to(device)
self.target_actor = Actor(lr_actor=alpha, input_dims=obs_dim, fc1_dims=fc1_dims,
fc2_dims=fc2_dims, action_dim=action_dim).to(device)
self.target_critic = Critic(lr_critic=beta, input_dims=state_dim, fc1_dims=fc1_dims,
fc2_dims=fc2_dims, n_agent=n_agent, action_dim=action_dim).to(device)
self.replay_buffer = ReplayBuffer(capacity = memo_size, obs_dim = obs_dim, state_dim = state_dim, action_dim = action_dim, batch_size = batch_size)
def get_action(self, obs):
single_obs = torch.tensor(data=obs, dtype=torch.float).unsqueeze(0).to(device)
single_action = self.actor.forward(single_obs)
noise = torch.randn(self.action_dim).to(device) * 0.2
single_action = torch.clamp(input=single_action + noise, min=0.0, max=1.0)
return single_action.detach().cpu().numpy()[0]
def save_model(self, filename):
self.actor.save_checkpoint(filename)
self.target_actor.save_checkpoint(filename)
self.critic.save_checkpoint(filename)
self.target_critic.save_checkpoint(filename)
def load_model(self, filename):
self.actor.load_checkpoint(filename)
self.target_actor.load_checkpoint(filename)
self.critic.load_checkpoint(filename)
self.target_critic.load_checkpoint(filename)