-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedge2.py
293 lines (241 loc) · 8.99 KB
/
edge2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# !/usr/bin/env python
# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
import os
import sys
from matplotlib import pyplot as plt
def threshold_demo(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 127, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
print("threshold value %s" % ret)
cv.imshow("binary", binary)
def local_threshold(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
binary = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)
cv.imshow("binary", binary)
def custom_threshold(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
h, w = gray.shape[:2]
m = np.reshape(gray, [1, w * h])
mean = 1.8 * m.sum() / (w * h)
print("mean: ", mean)
ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
cv.imshow("binary", binary)
return binary
def bi_demo(image):
dst = cv.bilateralFilter(image, 0, 100, 15)
cv.imshow("bilateral", dst)
def open_demo(image):
print(image.shape)
# gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
h, w = image.shape[:2]
m = np.reshape(image, [1, w * h])
mean = 1.8 * m.sum() / (w * h)
print("weight_mean: ", mean)
ret, binary = cv.threshold(image, mean, 255, cv.THRESH_BINARY)
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel)
cv.imshow("open_operation", binary)
return binary
def close_demo(image):
print(image.shape)
# gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(image, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
kernel = cv.getStructuringElement(cv.MORPH_RECT, (13, 13))
binary = cv.morphologyEx(binary, cv.MORPH_CLOSE, kernel)
cv.imshow("close_operation", binary)
return binary
def add_demo(m1, m2):
dst = cv.add(m1, m2)
cv.imshow("add_demo", dst)
return dst
def subtract_demo(m1, m2):
dst = cv.subtract(m1, m2)
cv.imshow("subtract_demo", dst)
return dst
def divide_demo(m1, m2):
dst = cv.divide(m1, m2)
cv.imshow("divide_demo", dst)
def multiply_demo(m1, m2):
dst = cv.multiply(m1, m2)
cv.imshow("multiply_demo", dst)
return dst
def blur_demo(image):
dst = cv.blur(image, (3, 3))
cv.imshow("blur_demo", dst)
def median_blur_demo(image):
dst = cv.medianBlur(image, 5)
cv.imshow("median_blur_demo", dst)
return dst
def custom_blur_demo(image):
# kernel = np.ones([5,5], np.float32)/25
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)
dst = cv.filter2D(image, -1, kernel=kernel)
cv.imshow("custom_blur_demo", dst)
return dst
def edge_demo(image):
blurred = cv.GaussianBlur(image, (1, 1), 0)
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY)
xgrad = cv.Sobel(image, cv.CV_16SC1, 1, 0)
ygrad = cv.Sobel(image, cv.CV_16SC1, 0, 1)
edge_output = cv.Canny(xgrad, ygrad, 30, 90) # 3:1
#cv.imshow("Canny Edge", edge_output)
return edge_output
def convex_demo(img):
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(gray, 127, 255, cv.THRESH_BINARY)
contours, hierarchy = cv.findContours(thresh, 2, 1)
for cnt in contours:
hull = cv.convexHull(cnt)
length = len(hull)
if length > 3:
for i in range(length):
cv.line(img, tuple(hull[i][0]), tuple(hull[(i + 1) % length][0]), (0, 0, 255), 2)
cv.imshow('convex', img)
cv.waitKey()
return img
def poly_demo(img):
imgray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(imgray, 127, 255, 0)
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
cnt = contours[1]
epsilon = 0.5 * cv.arcLength(cnt, True)
approx = cv.approxPolyDP(cnt, epsilon, True)
cv.polylines(img, [approx], True, (0, 0, 255), 2)
cv.imshow('poly_demo', img)
cv.waitKey()
return img
def color_change(image):
print(image.shape)
height = image.shape[0]
width = image.shape[1]
channels = image.shape[2]
print("width: %s, height: %s, channels: %s" % (width, height, channels))
for row in range(height):
for col in range(width):
for c in range(channels):
if c == 2:
if image[row, col, c] == 255:
image[row, col, c] = 0
elif c == 1:
if image[row, col, c] == 255:
image[row, col, c] = 255
elif c == 0:
if image[row, col, c] == 255:
image[row, col, c] = 0
cv.imshow("color change", image)
return image
def sobel_demo(image):
# image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
sobelX = cv.Sobel(image, cv.CV_64F, 1, 0)
sobelY = cv.Sobel(image, cv.CV_64F, 0, 1)
sobelX = np.uint8(np.absolute(sobelX))
sobelY = np.uint8(np.absolute(sobelY))
sobelCombined = cv.bitwise_or(sobelX, sobelY)
cv.imshow("Sobel_X", sobelX)
cv.imshow("sobel_Y", sobelY)
plus_sobel = cv.add(sobelX, sobelY)
cv.imshow("sobel_plus", plus_sobel)
cv.waitKey()
return sobelY
def erode(img):
h = img.shape[0]
w = img.shape[1]
img1 = np.zeros((h, w), np.uint8)
for i in range(1, h - 1):
for j in range(1, w - 1):
min = img[i, j]
for k in range(i - 1, i + 2):
for l in range(j - 1, j + 2):
if k < 0 | k >= h - 1 | l < 0 | l >= w - 1:
continue
if img[k, l] < min:
min = img[k, l]
img1[i, j] = min
cv.imshow("erode", img1)
return img1
def expand(img):
h = img.shape[0]
w = img.shape[1]
img1 = np.zeros((h, w), np.uint8)
for i in range(1, h - 1):
for j in range(1, w - 1):
max = img[i, j]
for k in range(i - 1, i + 2):
for l in range(j - 1, j + 2):
if k < 0 | k >= h - 1 | l < 0 | l >= w - 1:
continue
if img[k, l] > max:
max = img[k, l]
img1[i, j] = max
cv.imshow("expand", img1)
return img1
def inverse(image):
dst = cv.bitwise_not(image)
cv.imshow("inverse demo", dst)
return dst
def vote_window(image): # vote window
print(image.shape)
height = image.shape[0]
width = image.shape[1]
print("width: %s, height: %s" % (width, height))
for row in range(2, height - 1, 3):
for col in range(2, width - 1, 3):
pv0 = image[row, col]
pv1 = image[row - 1, col - 1]
pv2 = image[row - 1, col]
pv3 = image[row - 1, col + 1]
pv4 = image[row, col - 1]
pv5 = image[row, col + 1]
pv6 = image[row + 1, col - 1]
pv7 = image[row + 1, col]
pv8 = image[row + 1, col + 1]
vote_sum = (float(pv1) + float(pv2) + float(pv3) + float(pv4) +
float(pv5) + float(pv6) + float(pv7) + float(pv8))
vote_ratio = vote_sum / 2040.0
print("vote ratio", vote_ratio)
if vote_ratio >= 0.125:
image[row, col] = 0
image[row - 1, col - 1] = 0
image[row - 1, col] = 0
image[row - 1, col + 1] = 0
image[row, col - 1] = 0
image[row, col + 1] = 0
image[row + 1, col - 1] = 0
image[row + 1, col] = 0
image[row + 1, col + 1] = 0
else:
image[row, col] = 255
image[row - 1, col - 1] = 255
image[row - 1, col] = 255
image[row - 1, col + 1] = 255
image[row, col - 1] = 255
image[row, col + 1] = 255
image[row + 1, col - 1] = 255
image[row + 1, col] = 255
image[row + 1, col + 1] = 255
cv.imshow("pixels_demo", image)
return image
inputfolder="F:/CR/picture_2_13/Original_2_13/" #the name of the folder that store original files
originalnames=os.listdir(inputfolder) #Get the names of original files
originalnames.sort(key=lambda x:int(x[-9:-4]))
outputfolder='F:/CR/picture_2_13/Post_2_13/' #the name of the folder that store post files
suffix='_edge.jpg' #extension name
postpaths=[]
for i in originalnames:
postpaths.append(outputfolder+i[0:5]+suffix) # Get the paths of post files
src = cv.imread(inputfolder+i)
src1 = edge_demo(src)
cv.imwrite(postpaths[-1], src1)
cv.waitKey(0)
cv.destroyAllWindows()
# src = cv.imread("F:/CR/Original/picture_1_22/00930.tif")
# #cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
# #cv.imshow("input image", src)
# src1 = edge_demo(src)
# cv.imwrite('F:/CR/Post/00930_edge.jpg', src1)
# cv.waitKey(0)
# cv.destroyAllWindows()