-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm_python.py
363 lines (293 loc) · 12.1 KB
/
hmm_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from pyspark import SparkContext
import re
import random
""""
TO DO:
- Break forward
- Documentation
"""
def forward(list_observations,
list_states,
dict_initial_distribution,
dict_transition_matrix,
dict_emission_matrix):
"""
Forward
"""
list_alpha = []
# Initialization part
dict_alpha = {}
for str_state in list_states:
# Compute initial alpha value
str_first_observation = list_observations[0]
pi = dict_initial_distribution[str_state]
b = dict_emission_matrix[str_state][str_first_observation]
# Initial alpha value
alpha_zero = pi * b
dict_alpha[str_state] = alpha_zero
list_alpha.append(dict_alpha)
# Recursive part
for i, str_observation in enumerate(list_observations[1:], 1):
dict_alpha = {}
for str_state in list_states:
# Compute alpha value
# noinspection PyUnresolvedReferences
list_values = [list_alpha[i - 1][str_new_state] *
dict_transition_matrix[str_new_state][str_state]
for str_new_state in list_states]
total_sum = sum(list_values)
b = dict_emission_matrix[str_state][str_observation]
alpha = b * total_sum
dict_alpha[str_state] = alpha
list_alpha.append(dict_alpha)
return list_alpha
def backward(list_observations,
list_states,
dict_transition_matrix,
dict_emission_matrix):
"""
Backward
"""
list_beta = []
# Terminal state
dict_beta = {}
for str_state in list_states:
dict_beta[str_state] = 1
list_beta.append(dict_beta)
for i, str_observation in enumerate(reversed(list_observations[1:]), 1):
dict_beta = {}
for str_state in list_states:
# Compute alpha value
list_values = [list_beta[i - 1][str_state_k] *
dict_emission_matrix[str_state_k][str_observation] *
dict_transition_matrix[str_state][str_state_k]
for str_state_k in list_states]
beta = sum(list_values)
dict_beta[str_state] = beta
list_beta.append(dict_beta)
# need to reverse list_beta
list_beta.reverse()
return list_beta
def loop_i(list_states, list_alpha, list_beta):
dict_i = {}
dict_alpha_0 = list_alpha[0]
dict_beta_0 = list_beta[0]
# To remove and set before
for key in list_states:
dict_i[key] = dict_alpha_0[key] * dict_beta_0[key]
return dict_i
def loop_o(list_states,
list_alpha,
list_beta,
list_observations):
assert len(list_alpha) == len(list_beta)
dict_o = {key: {key_2: 0 for key_2 in list_observations}
for key in list_states}
for i, observation in enumerate(list_observations):
dict_alpha_i = list_alpha[i]
dict_beta_i = list_beta[i]
for key_state in list_states:
alpha_beta = dict_alpha_i[key_state] * dict_beta_i[key_state]
dict_o[key_state][observation] += alpha_beta
return dict_o
def loop_t(list_states,
list_alpha,
list_beta,
list_observations,
dict_transition,
dict_emission):
"""
Emission
"""
assert len(list_alpha) == len(list_beta)
dict_t = {key: {key2: 0 for key2 in list_states} for key in list_states}
# The first observation of the list is useless for the emission computation
for i, observation in enumerate(list_observations[1:]):
dict_alpha_i = list_alpha[i]
dict_beta_i_plus_1 = list_beta[i + 1]
for key_state in list_states:
for key_state2 in list_states:
value = dict_alpha_i[key_state]
value *= dict_beta_i_plus_1[key_state2]
value *= dict_transition[key_state][key_state2]
value *= dict_emission[key_state2][observation]
dict_t[key_state][key_state2] += value
return dict_t
def reduce_dict_sum(dict_1, dict_2):
dict_summed = {key: dict_1.get(key, 0) + dict_2.get(key, 0)
for key
in set(dict_1) | set(dict_2)}
return dict_summed
def reduce_nested_dict_sum(list_states, nested_dict_1, nested_dict_2):
nested_dict_summed = {}
for state in list_states:
dict_1 = nested_dict_1[state]
dict_2 = nested_dict_2[state]
nested_dict_summed[state] = reduce_dict_sum(dict_1, dict_2)
return nested_dict_summed
def split_into_sentences(text):
alphabets = "([A-Za-z])"
prefixes = "(Mr|St|Mrs|Ms|Dr)[.]"
suffixes = "(Inc|Ltd|Jr|Sr|Co)"
starters = ("(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|"
"However\s|That\s|This\s|Wherever)")
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
websites = "[.](com|net|org|io|gov)"
text = " " + text + " "
text = text.replace("\n", " ")
text = re.sub(prefixes, "\\1<prd>", text)
text = re.sub(websites, "<prd>\\1", text)
if "Ph.D" in text:
text = text.replace("Ph.D.", "Ph<prd>D<prd>")
text = re.sub("\s" + alphabets + "[.] ", " \\1<prd> ", text)
text = re.sub(acronyms + " " + starters, "\\1<stop> \\2", text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]",
"\\1<prd>\\2<prd>\\3<prd>", text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]", "\\1<prd>\\2<prd>",
text)
text = re.sub(" " + suffixes + "[.] " + starters, " \\1<stop> \\2",
text)
text = re.sub(" " + suffixes + "[.]", " \\1<prd>", text)
text = re.sub(" " + alphabets + "[.]", " \\1<prd>", text)
if "”" in text:
text = text.replace(".”", "”.")
if "\"" in text:
text = text.replace(".\"", "\".")
if "!" in text:
text = text.replace("!\"", "\"!")
if "?" in text:
text = text.replace("?\"", "\"?")
text = text.replace(".", ".<stop>")
text = text.replace("?", "?<stop>")
text = text.replace("!", "!<stop>")
text = text.replace("<prd>", ".")
sentences = text.split("<stop>")
sentences = sentences[:-1]
sentences = [s.strip() for s in sentences]
return sentences
def nested_dict_normalization(list_states, nested_dict):
nested_dict_normalized = {}
for state in list_states:
dictionary = nested_dict[state]
nested_dict_normalized[state] = dict_normalization(dictionary)
return nested_dict_normalized
def nested_random_matrix(i, j):
nested_list_random = [[random.random() for _ in range(j)]
for _ in range(i)]
nested_list_normalized = [[val / sum(list_random) for val in list_random]
for list_random in nested_list_random]
return nested_list_normalized
def dict_normalization(dictionary):
dict_normalized = {key: val / sum(dictionary.values())
for key, val
in dictionary.items()}
return dict_normalized
if __name__ == '__main__':
sc = SparkContext()
#
# list_states = ['ADJ', 'ADP', 'ADV', 'CONJ', 'DET', 'NOUN',
# 'NUM', 'PRT', 'PRON', 'PUNC', 'VERB', 'X']
list_states = ['A', 'B', 'C']
n_states = len(list_states)
# Data loading and initialization
# Use your own data here, sentences must be ended by a punctuation mark Q
text_file = sc.textFile('./data/file.txt')
rdd_data = (text_file
.flatMap(split_into_sentences)
.map(lambda s: re.findall(r"[\w']+|[.,!?;]", s))
# Empty removal
.map(lambda x: x)
)
rdd_data.persist()
# rdd_data.collect()
# Identity map for flattening
list_token = (rdd_data.flatMap(lambda x: x)
.collect())
set_token = set(list_token)
n_token = len(set_token)
print(f'File contains {len(list_token)} tokens.')
print(f'File contains {len(set_token)} unique tokens.')
# Generate random matrix for initialization
nested_random_start = nested_random_matrix(1, n_states)
nested_random_transition = nested_random_matrix(n_states, n_states)
nested_random_emission = nested_random_matrix(n_states, n_token)
# Define random transition and emission matrix from random values
dict_start_probability = dict(zip(list_states, nested_random_start[0]))
dict_transition_probability = {
list_states[i]: dict(zip(list_states, nested_random_transition[i]))
for i in range(n_states)}
dict_emission_probability = {
list_states[i]: dict(zip(set_token, nested_random_emission[i]))
for i in range(n_states)}
# Broadcast states and initial matrix.
bc_list_states = sc.broadcast(list_states)
bc_dict_start_hat = sc.broadcast(dict_start_probability)
bc_dict_transition_hat = sc.broadcast(dict_transition_probability)
bc_dict_emission_hat = sc.broadcast(dict_emission_probability)
n_iterations = 10
for n in range(n_iterations):
# Compute alpha variables
rdd_list_alpha = rdd_data.map(
lambda x: forward(x,
bc_list_states.value,
bc_dict_start_hat.value,
bc_dict_transition_hat.value,
bc_dict_emission_hat.value))
rdd_list_alpha.persist()
# rdd_list_alpha.collect()
# Compute beta variables
rdd_list_beta = rdd_data.map(
lambda x: backward(x,
bc_list_states.value,
bc_dict_transition_hat.value,
bc_dict_emission_hat.value))
rdd_list_beta.persist()
# rdd_list_beta.collect()
# Compute initial probability vector statistics
rdd_list_alpha_beta = rdd_list_alpha.zip(rdd_list_beta)
rdd_list_alpha_beta.persist()
rdd_list_alpha_beta_data = rdd_list_alpha_beta.zip(rdd_data)
rdd_list_alpha_beta_data.persist()
rdd_i = (rdd_list_alpha_beta
.map(lambda x: loop_i(bc_list_states.value,
x[0],
x[1])))
dict_reduced_i = rdd_i.reduce(reduce_dict_sum)
rdd_o = (rdd_list_alpha_beta_data
.map(lambda x: loop_o(bc_list_states.value,
x[0][0],
x[0][1],
x[1])))
dict_reduced_o = rdd_o.reduce(
lambda x, y: reduce_nested_dict_sum(bc_list_states.value,
x,
y))
rdd_t = (rdd_list_alpha_beta_data
.map(lambda x: loop_t(bc_list_states.value,
x[0][0],
x[0][1],
x[1],
bc_dict_transition_hat.value,
bc_dict_emission_hat.value)))
dict_reduced_t = rdd_t.reduce(
lambda x, y: reduce_nested_dict_sum(bc_list_states.value,
x,
y))
# Normalization of the values
dict_normalized_i = dict_normalization(dict_reduced_i)
dict_normalized_t = nested_dict_normalization(bc_list_states.value,
dict_reduced_t)
dict_normalized_o = nested_dict_normalization(bc_list_states.value,
dict_reduced_o)
# Un persist model parameters
bc_dict_start_hat.unpersist()
bc_dict_emission_hat.unpersist()
bc_dict_transition_hat.unpersist()
# Update with new model parameters
bc_dict_start_hat = sc.broadcast(dict_normalized_i)
bc_dict_transition_hat = sc.broadcast(dict_normalized_t)
bc_dict_emission_hat = sc.broadcast(dict_normalized_o)
"""
Vanishing problem hence need to split into sentences.
6:53 7:08
"""