-
Notifications
You must be signed in to change notification settings - Fork 1
/
finetune.py
206 lines (177 loc) · 6.02 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import sys
import torch
import argparse
import torch.nn as nn
from datasets import load_dataset
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import (
prepare_model_for_int8_training,
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
)
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default=None)
parser.add_argument('--micro_batch_size', type=int, default=32, help='micor batch size')
parser.add_argument('--epochs', type=int, default=3, help='epochs')
parser.add_argument('--push_to_hub', type=bool, default=False, help='push to hub')
parser.add_argument('--hub_model_id', type=str, default=None, help='model hub id')
parser.add_argument('--hub_token', type=str, default=None, help='hub token')
parser.add_argument('--wandb', type=bool, default=False, help='wandb')
args = parser.parse_args()
# Parameters
MICRO_BATCH_SIZE = args.micro_batch_size
BATCH_SIZE = 64
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = args.epochs
LEARNING_RATE = 3e-4
CUTOFF_LEN = 512
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE = 2000
TARGET_MODULES = [
"q_proj",
"k_proj",
"v_proj",
"o_proj"
]
DATA_PATH = args.data_path if args.data_path is not None else "data/alpaca_gpt4_ckb.json"
OUTPUT_DIR = "checkpoints/"
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
device_map=device_map,
)
total_params, params = 0, 0
tokenizer = LlamaTokenizer.from_pretrained(
"decapoda-research/llama-7b-hf", add_eos_token=True
)
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
target_modules=TARGET_MODULES,
lora_dropout=LORA_DROPOUT,
bias="none",
task_type="CAUSAL_LM",
)
# config.save_pretrained(OUTPUT_DIR)
model = get_peft_model(model, config)
tokenizer.pad_token_id = 0
data = load_dataset("json", data_files=DATA_PATH)
for n, p in model.model.named_parameters():
if any([x in n for x in ["lora"]]):
total_params += p.numel()
params += p.numel()
print(
"Total number of parameters: {}M, rate: {}%".format(
total_params // 1000 / 1000, round(total_params / params * 100, 2)
)
)
def generate_and_tokenize_prompt(data_point):
# This function masks out the labels for the input,
# so that our loss is computed only on the response.
user_prompt = (
(
f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
"""
)
if data_point["input"] else
(
f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
"""
)
)
len_user_prompt_tokens = (
len(
tokenizer(
user_prompt,
truncation=True,
max_length=CUTOFF_LEN + 1,
)["input_ids"]
)
- 1
) # no eos token
full_tokens = tokenizer(
user_prompt + data_point["output"],
truncation=True,
max_length=CUTOFF_LEN + 1,
padding="max_length",
)["input_ids"][:-1]
return {
"input_ids": full_tokens,
"labels": [-100] * len_user_prompt_tokens
+ full_tokens[len_user_prompt_tokens:],
"attention_mask": [1] * (len(full_tokens)),
}
if VAL_SET_SIZE > 0:
train_val = data["train"].train_test_split(
test_size=VAL_SET_SIZE, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
MAX_STEPS = max((len(data["train"]) - VAL_SET_SIZE) // BATCH_SIZE * EPOCHS, EPOCHS)
# Training
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=MICRO_BATCH_SIZE,
per_device_eval_batch_size=MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_steps=100,
num_train_epochs=EPOCHS,
max_steps=MAX_STEPS,
learning_rate=LEARNING_RATE,
fp16=True,
logging_steps=20,
logging_dir=f"./logs",
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
save_strategy="steps",
eval_steps=500 if VAL_SET_SIZE > 0 else None,
save_steps=500,
output_dir=OUTPUT_DIR,
save_total_limit=5,
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
# torch_compile=True, # optimizations
optim="adamw_torch",
report_to="wandb" if args.wandb else [],
push_to_hub=args.push_to_hub,
hub_strategy="every_save",
hub_model_id=args.hub_model_id if args.push_to_hub else None,
hub_token=args.hub_token if args.push_to_hub else None,
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
config.save_pretrained(OUTPUT_DIR)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train()
model.save_pretrained(OUTPUT_DIR)