-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_tokenizer.py
39 lines (26 loc) · 1.2 KB
/
train_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from datasets import load_dataset
from transformers import AutoTokenizer
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--tokenizer_name", default="facebook/bart-base", help="The name of the tokenizer to train a new one from")
parser.add_argument("--output_dir", default="tokenizer", type=str, help="Repo id the tokenizer to be pushed to")
parser.add_argument("--push_to_hub", default=False, action="store_true", help="Push to hub",)
args = parser.parse_args()
dataset = load_dataset("oscar-corpus/OSCAR-2301", "ckb", split="train", token=True)
def get_training_corpus(batch_size=1000):
for start_idx in range(0, len(dataset), batch_size):
samples = dataset[start_idx : start_idx + batch_size]
yield samples["text"]
training_corpus = get_training_corpus()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
tokenizer = tokenizer.train_new_from_iterator(
training_corpus, vocab_size=len(tokenizer),
special_tokens_map={
"eos_token": "</s>",
"bos_token": "<s>",
"unk_token": "<unk>",
"pad_token": "<pad>",
"mask_token": "<mask>",
},
)
tokenizer.save_pretrained(args.output_dir, push_to_hub=args.push_to_hub)