From cc26633e0c2589211a378ea0acb0842b4fdfa298 Mon Sep 17 00:00:00 2001 From: Thomas Werkmeister <thomas@werkmeister.me> Date: Mon, 13 Nov 2023 13:03:01 +0100 Subject: [PATCH 1/2] Made use of drop-small-last-batch logic only possible in DIET and configurable --- rasa/nlu/classifiers/diet_classifier.py | 5 +++ rasa/utils/tensorflow/constants.py | 1 + rasa/utils/tensorflow/data_generator.py | 19 ++++++--- rasa/utils/train_utils.py | 5 +++ tests/nlu/classifiers/test_diet_classifier.py | 41 +++++++++++++------ 5 files changed, 53 insertions(+), 18 deletions(-) diff --git a/rasa/nlu/classifiers/diet_classifier.py b/rasa/nlu/classifiers/diet_classifier.py index 1cc65c89b3c9..bea4735da6fe 100644 --- a/rasa/nlu/classifiers/diet_classifier.py +++ b/rasa/nlu/classifiers/diet_classifier.py @@ -50,6 +50,7 @@ from rasa.shared.nlu.training_data.training_data import TrainingData from rasa.shared.nlu.training_data.message import Message from rasa.utils.tensorflow.constants import ( + DROP_SMALL_LAST_BATCH, LABEL, IDS, HIDDEN_LAYERS_SIZES, @@ -288,6 +289,9 @@ def get_default_config() -> Dict[Text, Any]: # a few steps, as the compilation of the graph tends to take more time than # running it. It is recommended to not adjust the optimization parameter. RUN_EAGERLY: False, + # Determines whether the last batch should be dropped if it contains fewer + # than half a batch size of examples + DROP_SMALL_LAST_BATCH: False, } def __init__( @@ -931,6 +935,7 @@ def train(self, training_data: TrainingData) -> Resource: self.component_config[BATCH_STRATEGY], self.component_config[EVAL_NUM_EXAMPLES], self.component_config[RANDOM_SEED], + drop_small_last_batch=self.component_config[DROP_SMALL_LAST_BATCH], ) callbacks = train_utils.create_common_callbacks( self.component_config[EPOCHS], diff --git a/rasa/utils/tensorflow/constants.py b/rasa/utils/tensorflow/constants.py index 047db9878c67..39d5ea6d0560 100644 --- a/rasa/utils/tensorflow/constants.py +++ b/rasa/utils/tensorflow/constants.py @@ -113,3 +113,4 @@ USE_GPU = "use_gpu" RUN_EAGERLY = "run_eagerly" +DROP_SMALL_LAST_BATCH = "drop_small_last_batch" diff --git a/rasa/utils/tensorflow/data_generator.py b/rasa/utils/tensorflow/data_generator.py index a696f607c026..e54b95dad335 100644 --- a/rasa/utils/tensorflow/data_generator.py +++ b/rasa/utils/tensorflow/data_generator.py @@ -344,6 +344,7 @@ def __init__( epochs: int = 1, batch_strategy: Text = SEQUENCE, shuffle: bool = True, + drop_small_last_batch: bool = False, ): """Initializes the increasing batch size data generator. @@ -353,6 +354,8 @@ def __init__( epochs: The total number of epochs. batch_strategy: The batch strategy. shuffle: If 'True', data will be shuffled. + drop_small_last_batch: if 'True', the last batch in an epoch will be dropped + if it has less examples than half the batch size """ super().__init__(model_data, batch_size, batch_strategy, shuffle) @@ -370,6 +373,7 @@ def __init__( self._current_batch_size = 0 # create separate data variable that will store modified data for each batch self._data: Data = {} + self.drop_small_last_batch = drop_small_last_batch self.on_epoch_end() def __len__(self) -> int: @@ -381,11 +385,16 @@ def __len__(self) -> int: # data was rebalanced, so need to recalculate number of examples num_examples = self.model_data.number_of_examples(self._data) batch_size = self._current_batch_size - # keep last batch only if it has at least half a batch size of examples - last_batch_half_full = num_examples % batch_size >= math.ceil(batch_size / 2) - num_batches = num_examples // batch_size + int(last_batch_half_full) - # Return at least 1 if there is an example - return max(num_batches, int(num_examples > 0)) + if self.drop_small_last_batch: + # keep last batch only if it has at least half a batch size of examples + last_batch_half_full = num_examples % batch_size >= math.ceil( + batch_size / 2 + ) + num_batches = num_examples // batch_size + int(last_batch_half_full) + # Return at least 1 if there is an example + return max(num_batches, int(num_examples > 0)) + else: + return num_examples // batch_size + int(num_examples % batch_size > 0) def __getitem__(self, index: int) -> Tuple[Any, Any]: """Gets batch at position `index`. diff --git a/rasa/utils/train_utils.py b/rasa/utils/train_utils.py index 36de0370d210..764507d7e39d 100644 --- a/rasa/utils/train_utils.py +++ b/rasa/utils/train_utils.py @@ -302,6 +302,7 @@ def create_data_generators( eval_num_examples: int = 0, random_seed: Optional[int] = None, shuffle: bool = True, + drop_small_last_batch: bool = False, ) -> Tuple[RasaBatchDataGenerator, Optional[RasaBatchDataGenerator]]: """Create data generators for train and optional validation data. @@ -313,6 +314,8 @@ def create_data_generators( eval_num_examples: Number of examples to use for validation data. random_seed: The random seed. shuffle: Whether to shuffle data inside the data generator. + drop_small_last_batch: whether to drop the last batch if it has fewer than half + a batch size of examples Returns: The training data generator and optional validation data generator. @@ -328,6 +331,7 @@ def create_data_generators( epochs=epochs, batch_strategy=batch_strategy, shuffle=shuffle, + drop_small_last_batch=drop_small_last_batch, ) data_generator = RasaBatchDataGenerator( @@ -336,6 +340,7 @@ def create_data_generators( epochs=epochs, batch_strategy=batch_strategy, shuffle=shuffle, + drop_small_last_batch=drop_small_last_batch, ) return data_generator, validation_data_generator diff --git a/tests/nlu/classifiers/test_diet_classifier.py b/tests/nlu/classifiers/test_diet_classifier.py index 1f0c37a85faa..1fd84fdac47d 100644 --- a/tests/nlu/classifiers/test_diet_classifier.py +++ b/tests/nlu/classifiers/test_diet_classifier.py @@ -971,24 +971,35 @@ async def test_no_bilou_when_entity_recognition_off( @pytest.mark.timeout(120, func_only=True) @pytest.mark.parametrize( - "batch_size, expected_num_batches", + "batch_size, expected_num_batches, drop_small_last_batch", # the training dataset has 48 NLU examples [ - (1, 48), - (8, 6), - (15, 3), - (16, 3), - (18, 3), - (20, 2), - (32, 2), - (64, 1), - (128, 1), - (256, 1), + (1, 48, True), + (8, 6, True), + (15, 3, True), + (16, 3, True), + (18, 3, True), + (20, 2, True), + (32, 2, True), + (64, 1, True), + (128, 1, True), + (256, 1, True), + (1, 48, False), + (8, 6, False), + (15, 4, False), + (16, 3, False), + (18, 3, False), + (20, 3, False), + (32, 2, False), + (64, 1, False), + (128, 1, False), + (256, 1, False), ], ) async def test_dropping_of_last_partial_batch( batch_size: int, expected_num_batches: int, + drop_small_last_batch: bool, create_diet: Callable[..., DIETClassifier], train_and_preprocess: Callable[..., Tuple[TrainingData, List[GraphComponent]]], ): @@ -1012,7 +1023,9 @@ async def test_dropping_of_last_partial_batch( ) model_data = diet.preprocess_train_data(training_data) - data_generator, _ = train_utils.create_data_generators(model_data, batch_size, 1) + data_generator, _ = train_utils.create_data_generators( + model_data, batch_size, 1, drop_small_last_batch=drop_small_last_batch + ) assert len(data_generator) == expected_num_batches @@ -1041,6 +1054,8 @@ async def test_dropping_of_last_partial_batch_empty_data( ) model_data = diet.preprocess_train_data(training_data) - data_generator, _ = train_utils.create_data_generators(model_data, 64, 1) + data_generator, _ = train_utils.create_data_generators( + model_data, 64, 1, drop_small_last_batch=True + ) assert len(data_generator) == 0 From 7f1faccd5a82083f1241db17759998d858244ff6 Mon Sep 17 00:00:00 2001 From: Thomas Werkmeister <thomas@werkmeister.me> Date: Mon, 13 Nov 2023 13:21:55 +0100 Subject: [PATCH 2/2] Added changelog --- changelog/12948.bugfix.md | 1 + 1 file changed, 1 insertion(+) create mode 100644 changelog/12948.bugfix.md diff --git a/changelog/12948.bugfix.md b/changelog/12948.bugfix.md new file mode 100644 index 000000000000..7479161831be --- /dev/null +++ b/changelog/12948.bugfix.md @@ -0,0 +1 @@ +Fixed UnexpecTEDIntentlessPolicy training errors that resulted from a change to batching behavior. Changed the batching behavior back to the original for all components. Made the changed batching behavior accessible in DietClassifier using `drop_small_last_batch: True`.