forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackgroundnet.py
executable file
·106 lines (84 loc) · 4.06 KB
/
backgroundnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python3
#
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import sys
import argparse
from jetson_inference import backgroundNet
from jetson_utils import (videoSource, videoOutput, loadImage, Log,
cudaAllocMapped, cudaMemcpy, cudaResize, cudaOverlay)
# parse the command line
parser = argparse.ArgumentParser(description="Perform background subtraction/removal and replacement.",
formatter_class=argparse.RawTextHelpFormatter,
epilog=backgroundNet.Usage() + videoSource.Usage() + videoOutput.Usage() + Log.Usage())
parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream")
parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream")
parser.add_argument("--network", type=str, default="u2net", help="pre-trained model to load (see below for options)")
parser.add_argument("--replace", type=str, default="", help="image filename to use for background replacement")
parser.add_argument("--filter-mode", type=str, default="linear", choices=["point", "linear"], help="filtering mode used during visualization, options are:\n 'point' or 'linear' (default: 'linear')")
try:
args = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)
# load the background removal network
net = backgroundNet(args.network, sys.argv)
# create video sources & outputs
input = videoSource(args.input_URI, argv=sys.argv)
output = videoOutput(args.output_URI, argv=sys.argv)
# image replacement routines
if args.replace:
img_replacement = loadImage(args.replace, format='rgba8')
img_replacement_scaled = None
img_output = None
def replaceBackground(img_input):
global img_replacement_scaled
global img_output
if not img_replacement_scaled or img_input.shape != img_replacement_scaled.shape:
img_replacement_scaled = cudaAllocMapped(like=img_input)
img_output = cudaAllocMapped(like=img_input)
cudaResize(img_replacement, img_replacement_scaled, filter=args.filter_mode)
cudaMemcpy(img_output, img_replacement_scaled)
cudaOverlay(img_input, img_output, 0, 0)
return img_output
# process frames until EOS or the user exits
while True:
# capture the next image (with alpha channel)
img_input = input.Capture(format='rgba8')
if img_input is None: # timeout
continue
# perform background removal
net.Process(img_input, filter=args.filter_mode)
# perform background replacement
if args.replace:
img_output = replaceBackground(img_input)
else:
img_output = img_input
# render the image
output.Render(img_output)
# update the title bar
output.SetStatus("backgroundNet {:s} | Network {:.0f} FPS".format(net.GetNetworkName(), net.GetNetworkFPS()))
# print out performance info
net.PrintProfilerTimes()
# exit on input/output EOS
if not input.IsStreaming() or not output.IsStreaming():
break