-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgeneration.py
102 lines (83 loc) · 3.62 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
import json
import os
from types import MethodType
import torch
import torch.nn.functional as F
from vllm import LLM, SamplingParams
answer_lang = {
"zh": "请用中文回答。",
"en": " Answer in English.",
"fr": " Veuillez répondre en français.",
"es": " Por favor responda en español.",
"id": " Tolong dijawab dalam bahasa Indonesia.",
"ja": "日本語で答えてください。",
"vi": " Hãy trả lời bằng tiếng Việt.",
}
def load_dataset(lang, sampling_params):
texts = []
texts = [l.strip() for l in open(f"dataset/mvicuna/{lang}.txt")]
texts = [t + answer_lang[lang] for t in texts]
texts = [f"Q: {t}\nA:" for t in texts]
sampling_params.stop = ["\nQ:", "\nA:"]
if "llama" in args.model:
sampling_params.max_tokens = 2048
else:
sampling_params.max_tokens = 1024
return texts, sampling_params
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default="meta-llama/Llama-2-7b-hf")
parser.add_argument("-a", "--activation_mask", type=str, default="")
args = parser.parse_args()
model = LLM(model=args.model, tensor_parallel_size=torch.cuda.device_count(), enforce_eager=True)
sampling_params = SamplingParams(temperature=0, repetition_penalty=1.1)
is_llama = bool(args.model.lower().find("llama") >= 0)
if args.activation_mask:
activation_masks = torch.load(args.activation_mask)
activation_mask_name = args.activation_mask.split("/")[-1].split(".")
activation_mask_name = ".".join(activation_mask_name[1:])
else:
activation_masks = [None]
output_folder = f"results/{args.model.split('/')[-1]}/mvicuna"
os.makedirs(output_folder, exist_ok=True)
for activation_mask, mask_lang in zip(activation_masks, ["en", "zh", "fr", "es", "vi", "id", "ja"]):
if activation_mask:
def factory(mask):
def llama_forward(self, x):
gate_up, _ = self.gate_up_proj(x) # b, l, 2i
i = gate_up.size(-1)
activation = F.silu(gate_up[:, :, : i // 2])
activation.index_fill_(2, mask, 0)
x = activation * gate_up[:, :, i // 2 :]
x, _ = self.down_proj(x)
return x
def bloom_forward(self, x: torch.Tensor):
x, _ = self.dense_h_to_4h(x)
x = self.gelu_impl(x)
x.index_fill_(2, mask, 0)
x, _ = self.dense_4h_to_h(x)
return x
if is_llama:
return llama_forward
else:
return bloom_forward
for i, layer_mask in enumerate(activation_mask):
if is_llama:
obj = model.llm_engine.driver_worker.model_runner.model.model.layers[i].mlp
else:
obj = model.llm_engine.driver_worker.model_runner.model.transformer.h[i].mlp
obj.forward = MethodType(factory(layer_mask.to('cuda')), obj)
for lang in ["zh", "en", "es", "fr", "id", "ja", "vi"]:
texts, sampling_params, labels = load_dataset(lang, sampling_params)
outputs = model.generate(texts, sampling_params)
outputs = [o.outputs[0].text.strip() for o in outputs]
if activation_mask:
output_file = f"{output_folder}/{lang}.perturb.{mask_lang}.{activation_mask_name}.jsonl"
else:
output_file = f"{output_folder}/{lang}.jsonl"
results = []
for t, o, l in zip(texts, outputs):
out = {"input": t, "output": o}
results.append(out)
with open(output_file, "w", encoding="utf-8") as f:
f.write(json.dumps(results, indent=4, ensure_ascii=False) + "\n")